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INTRODUCTZOH 

Vnis report covers work on Task Ar«« II of the 

ARPA sponsored project "Res««rch in M«chin«-Ind«p«ndent 

Softw«r« Programming" covering the six-month period 

«nding on Decembsr 21, 1969.  Although technically, this 

report is the sequel to "The Final Report for th« 

Information System Theory Project"', it is self-con t«iri«d. 

This report includes the work of Dr. Anatol W. Holt 

and Mr. F. Commoner.  During the period noted above, 

consultations were held with Mr. Robert M. Shapiro, 

Dr. Carl Adam Petri and Dr. Shimon Even. 

This introduction is divided into three parts.  First, 

a summary of the objectives of the project as a whole; 

second a reported contract period; third, a view of 

things to come. 

'See bibliography for this and other directly related 
work. 
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A. Su—ary of Objectives 

There has, in the last years, bean an ever widening 

practical and academic interest in systesi probles« which 

become prominent when the system consists of many con- 

currently operating components — hardware or software — 

and the system environment consists oi many concurrent 

users.  . jio questions which arise are usually very difficult 

to state exactly enough so that one could speak of definitive 

answers, let alone actually find such answers.Here is a 

sample list, to give the flavor. 

Al.  Does the system perform the functions which are 

expected of it? 

A2.  Might the system "die" — i.e. be brought into 

a state of deadly embrace? 

A3.  Can the system be extended or contracted by the 

addition or removal of system resources? 

A4.  Where are the system bottlenecks and what improve- 

. ments in perfornance might be expected as a 

result of adding resources at bottleneck points? 

A5.  Suppose we wish to replace one system component 

by another one. Exactly what are the requirements 

which the new component must satisfy in order to 
■ 

insure "proper functioning" of the whole? 

The aim of our project is to build a theoretical 

foundation which will make it practically possible to ask 

questions such as these exactly, and find definitive 
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answers to the«. 

We ere entirely concerned vith systerna whose psrt- 

by-part performance can be thought of in discrete terms. 

Not pipe systeas through which fluids flow, but algorithms 

or circuits which perform digital functions, or aumufacturing 

units whoae inputa and outputa are diacrete lumps. 
■ 

We are entirely unconcerned with auch diatinctiona 

aa hardware/aoftwarc or computer/automobile factory, 

becauac the queationa which we wiah to ask and anawer 

apply equally on either aide of auch boundaries. 

There are many existing methods for the description 

and analysis of discrete systems.  To give perspective to 

our work it is helpful to contrast its methods and intent 

wiUi other techniques. 

To begin with there are system simulation languages 

(like GPSS or SIMSCRIPT).  In contrast to these, our style 

is mathematical. Our descriptive primitives are very few 

in number and the interesting properties of described 

systems are to be found by algorithms based on theorems, 

not by simulation.  As already mentioned above, we expect 

the ability to formulate interesting questions in a way 

which admits of exact answers, not answers by statistics. 

In contrast to automata theory, we are fundamentally 

interested in concurrent operation. This makes it im- 

possible to build one's models on. the notion system state. .  . 

While I am typing at an input terminal, a processor is 

r 
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ooapilin? A pxoqrmm  and a channal Is tranBaittmg 

froai a disc to a buffer area. Tha notion total »yta« 

■tata la a road block to tha fruitful description of this 

sat of circunstances. Also in contrast to autoMta theory 

la the content of our theorems. Me are not ooooemed with 

queations like, what claas of functions sre oooputahle 

by what claaa of devices, but rather with queationa lika» 

how far out~of-atep can thia part get relative to that part? 

Perhaps we are cloaeat in spirit to operations reaearoh 

tachniquoa, but with an insistoncc on conceptual econosiy 

and rigor sore cosnson in purer branches of Mtheskatics. 

A^-so, it is necesssry that our deacriptiona be built up 

part by part in analogy to the way in which the aystasw 

being described are built up part by part. This is in 

contrast to »any descriptions in the forsi of sets of 

equations or inequalitiea. Bach equation or inequality 

usually expresses sone constraint on the whole and does not 

correspond to a functional component.  In this respect, our 

descriptions will rcsomblc programming languages which allow 

assembly of parts. 

B.  Accomplishments of the Contract Period 

The basis upon which the work began was the "Final 

Report for the Information System Theory Project",  It 

became clear that a direct approach to the analysis of 

occurrence systems was too difficult and we backed off 

[ 
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to Uw «tvdr et tt00 ■l"rl»r c !•»••• of »tjoct«*«* — 

Wkx^mä vgshM «od %xmvm lynglttoo dt^or—i«   Both of 

rUl ooM« of 

i 

i^-oo te httfw that oor d«if«lc»piMf obillty to MMlyao 

the»« two CIMSO« will flvo w tko tools oitH «^ilcfi to 

•ttoek «h« Muilysis of systM« wfelct» aro Potrl-ost 

dMcrilMbU.    Itorliod frspte aod »toto trsMition dlsfra» 

IsoUto two Mfwct« of •ystoo d««crlptlon froo OM aoothon 

UM Mpsct whidi h*s to do with flow,  ood tho oofwct which 

has to do with fuoctioo.    Tho •oatysio of flow (oorhod 

graph«)  ahowa whoro itaoa flow and «diat othor itaoa thoy 

■oott  tha analyai« of fvnetion show« tho atxwctur« of tha 

itaaa and how thoy affact on« aoothar. 

In the aroa of oarfcad graph« «ffort waa divid«d into 

two partat    «—ntic« and oathaoatiea.    Hara *laaantica* 

aaana davaloping tachniqua« for aspraaaing oaaning« 

about «y«t«aa     In  o«rk«d graph for» (Ch«pt«r« II and HI 
.* 

of thia report.). On tha aida of oathaoatiea oany thaoraoa 

and algorithoa wara davalopod which hawa significant ayatao 

intarprot«tion (Chaptara IV and V) • 

In tha araa of atata transition analytia wa davwlopod 

a naw technical concept of Infonaat ion .which oahaa it 

poa«ibl« to oeaaura information quantitie« that flow la 

and out of a «tata machine, a« wall aa identify tha infor- 

mation content which flowa in and out at different atata  ■ «v* • 

traneition«, (Chapter VI). Thi« work i«# tho« far, of 
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theoretical rather than practicnl interest. 

C.  Things to Come 

In regard to marked graphs, we are approaching the 

point where it will be useful and necessary to build a 

program package for the construction and analysis of such 

graphs.  Without such a package we will not learn how to 

build marked graph representations of practical systems. 

An analogy can be made to computer programming.  Marksd 

graphs (and more generally, Petri nets) are to system 

description as computer code is to programming.  In order 

to represent large problems, one first needs assembly 

technique :, and subsequently higher-level languages. 

Efforts to mechanize such assembly of big descriptions are 

worth Mking since there now exist analytic tools which will 

reveal interesting properties of the resulting descriptions. 

Several next steps are indicated in moving toward the 

analysis of Petri nets. One direction is the direct 

extension of present marked graph results. Another direction 

is to form the appropriate connections between our existing 

work on state transition diagrasui and marked graphs.  Both 

of these directions will be pursued in the next period. 

u. 
Ü 

0 

.'•••»••'• ••• ••' 
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CHAPTER II.  SYSTEM DESCRIPTION 
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SYSTEM DESCRIPTION 

Of what does a system consist? For example, should 

we take processors, inputs and outputs as the elementary 

entities of which they are made? Do thay have states? 

Do they take space (or is it only their realizations 

which do)? When they operate, do they take time? Etc., 

etc. 

We shall introduce a set of elementary entities and 

elementary notations with which to structure, describe, 

and analyze systems.  Formally, these entities would be 

presented in a set of axioms — just as with points and 

lines in geometry — here, only by an informal description. 

Our starting points are the notions condition, event, 

and their instances.  An instance of an event is called 

an occurrence of that event. An instance of a condition 

is called a holding of that condition.  Out of them we 

hope to build the concepts with which a wide class of systems 

can be usefully described, categorized, and analyzed. 

The notions condition and event have, on the face of 

it, several appealing properties. They have as wide \ 

range of interpretation — from micro levels to macro 

levels — as do more standard concepts used as starting 

points in system description (like value, functions, 

storage, etc.) Also, conditions and events are by nature 

D       dynamic, temporal.  They don't have to be "pepped up", as 

functions and values must be, in order to exhibit motion. 
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Of course, if our project is to succeed we must 

(a) demonstrate that all of the usual notions (including 

functions and values) can be reconstructed and (b) that 

the effort is repaid by new insight and analytic power. 

A.  A First Example 

We begin with a simple example of structured conditions 

and events. 

12 

Al. 

In this picture,   each direc_ed interval ' N 
i   i+1 

represents a condition which we can express in English: 

it is i o'clock.  Each dividing mark  —M (or vertex) 
i 

represents an event (i o'clock).  The picture also 

establishes two relations between conditions and events: 

All holdings of conditiona begin with occurrences of 

event x , and all holdings of condition a end with 

occurrences of event y . • ...   .., . • ., • ,.* ...... 

In example Al we see a small circle called a token 

on the 8 o'clock interval.  This is. a method of exhibiting 
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a particular holding of the condition it is 8 o'clock. 

By moving the token across an event symbol we can exhibit 

the effect of the event. 

A2.  The effect of the event 9 o'clock. 

^o  9 

An occurrence of the event 9 o'clock ends a holding of 

the condition it is 8 o'clock and begins a holding of the 

condition it is 9 o'clock. 

B.  Occurrences and Holdings 

Figure Bl shows the relationship between the events 

and conditions pictured on the clock circle, and their 

occurrences and holdings. 

Bl. 

I—e>l-~ -t>\ — r*i n>i >i —CH 
1        2 3         4         5         6 7 

-CH —H» 
1   2 

—CH- 
3 

-CH 
4 

-oi 
5 

Each vertex oh the line which extends indefinitely in both 

directions represents an occurrence and each directed 
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segment reprc. «its a holding.  The labelling on the line 

shows what occurrences belong to what events and, by 

implication, what holdings to what conditions on the 

"clock".  As we see, each clock event is an infinite 

class of occurrences and each of its conditions is an 

infinite class of holdings. 

We can think of the occurrences and holdings in A3 

as generated by the clock circle:  by rolling it forwards 

and/or backwards.  This motion is also representable by 

moving the token around the circle. 

We will take two relations between holdings and 

occurrences as fundamental:  occurrence x begins 

holding h and occurrence y ends holding h . 

*y 

The beginning of h        The ending of h 

We will allow holdings without beginnings or without 

endings, or both, represented thus: 

-t»-» 

If a holding h has a beginning we denote it by  'h 

If a holding h has an ending we denote it by h? 

For an occurrence x , we use »x to denote the set of 

holdings h , such that h* ■ x ; we use x*  to denote 

i _ 
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the set of holdings  h such that x = 'h .  We will 

also apply the dot notation to sotf. of holdings or sets 

of occurrences, to mean all elements obtained by 

applying the dot to the elements of the sets. 

Consider an arbitrary collection of holdings and 

occurrences.  We can represent the collection as a directed 

graph with the unusual understanding that there are arcs 

which lack a head vertex or a tail vertex or both. Now 

relative to a given collection S of holdings and 

occurrences we define: 

B2.     For Si/S2 e S , s-^ is before S2  (s2 after 

s^ ) if there is a directed path from s^ 

to S2 .  If Sn  is before S2 or S2 is 

before s,  then we say that s^ and Sj 

are ordered.  If s^ and S2 are not 

ordered then they are concurrent. 

Finally we assume as an axiom: 

* B3.     For SpSj e S r if s,  is before S2 then 

s, is not before s^ .  In other words S , 

as a graph contains no circuits. 

C.  Concurrent Holdings 

An important aspect of describing complex systems is 

the ability to represent states of affairs defined by the 

concurrent holding of many condition.«- . We will now show 

by example how this is done. • • '  • ••*• ''•' *'• •' •'• : 

Let us picture a clock with more structure than Al, 

L 

L 

i: 
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Think of the clock face as divided into 12 sectors.  There 

is also a pointer which advances from sector to sector. 

The behavior of each sector is now characterized in terms 

of two conditions:  the pointer is in the sector» the 

pointer is not in the sector.  The behavior of the pointer 

is characterized by 12 conditions of the form:  the pointer 

is in sector i . 

Cl. 

■ 

In Cl we see a set of 12 concurrent holdings (12 tokens 

on arcs).  Each occurrence is now the ending for two 

holdings and the beginning for two holdings.  Correspondingly, 

the effect of an occurrence can be pictured by transporting 

two tokens across an event symbol in the diagram. 

C2. 

10.. 

==t> 
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There are two other useful pictures of occurrences to 

consider. 

First, we can think of an occurrence as expressing a 

difference between sets of holdinqs. 

C3. 

.2 i :\W 
■   s 

y 
i: 
i: 

v. .V 
\\ .•/ 
V, , • s v • • '   '    s 

The dash set 
The dot set and 
The difference 

The occurrence 
which transforms 
the dot set into 
the dash set. 

Contracting the line in C3.2 to a point and 

labelling the arcs so as to picture the occurrence in 

C2, we get: 

S8+ S8- 

D 
Ij 

D 
0 

v 

S9-  S9+ 

S8+ the pointer is in sector 8 

58- the pointer is not in sector 8 

S9+ the pointer is in sector 9 

59- the pointer is not in sector 9 

Here is a larger picture of interconnected holdings 

and occurrences represented by Cl. 

, / • »f ,.1. 
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s2- 

Prom C5 we see at a glance that the occurrences relate to 

one another just as they did in Bl — namely, there is an 

endless sequence of them which repeats a cycle of events. 

Since we are about to consider pictures in which 

occurrences as well as holdings may be concurrent, it is 

now appropriate to express exactly what we mean by ordered 

holdings and occurrences with reference to pictures like 

C5. 

C6. -Two holdings or occurrences are ordered if they 
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are connected by a directed path.     They arc 

then ordered in  the sense of  the path. 

1] 

' 

D 
0 
0 

D.  Concurrent Occurrences 

Another inportant aspect of system description is 

the ability to express, formally, meanings such as:  x 

happens while y happens — in other words, that an 

occurrence of x and an occurrence of y are not 

ordered with respect to one another. 

We get an example of unordered occurrences with a 

variation on Cl.  Imagine a clock face with two pointers, 

both rotating in the same direction but never passing one 

another.  Assume further that, aside from their position 

relative to the clock face, the two pointers are not 

distinguishable one from the other.  These assumptions 

give rise to the following variation on Cl. 

• 

Dl. 

Relative to the set of holdings shown in C5 there are two 
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events which cai. occur — > o'clock M»d 4 o'clock and 

they are not ordered with respect to one another — 

i.e. concurrent.  In the style of C3 we can picture the 

If wo think of an occurrence as a set change — knock 

off one "bump" and add another — it is a change which is 

applicable to many different sets;  namely any which has 

the bump which is to be knocked off and does not have the 

bump which is to bo added.  Thus we can think of the 

occurrence of the event 9 o'clock pictured in D2 as applied 

to set A, or as applied to set A already changed by the 

occurrence of 4 o'clock — or, indeed, to this latter set 

modified yet further by an occurrence of the event 5 o'clock 

which is after the occurrence of 4 o'clock» and many others. 

It is tempting to think of a maximal set of concurrent 

holdings which we call a time slice, or simply slice, as an •'-.'* 

instance of a total r.yatcn state.  We now see that when 

concurrent occurrences are possible, this picture of a 
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two pointers Ap(yBar in alternation. Wc would now like to 

■how two variations on Dl.  In the first, the two pointers 

•re less distinguishable than in Dl; in the second, more 

distinguishable. 

The pointers become less distinguished if we assume 

that they can overtake one another. That requires that 

two pointers be able to occupy the same sector concurrently. 

13. 

i: 
[ 

Two tokens on an arc msan that there are two con- 

current holdings of the saise condttton> e.g. in B3  • 0 0 H 

swan* a pair of concurrent holdings of the condition 

sector 1 Is ewoty.  Thus the sectors »ay be filled, 

twice concurrently, and may be full, twice concurrently ~ 

i.e. occupied by two pointers. 
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We could look at E3 either as consisting of 12 

sectors, each of capacity 2,  or of 24 sectors grouped 

into 12 groups of 2 indistinguishable ones.  Also, the 

slice exhibited in E3 can now be transforinod by occurrences 

into a slice in which both tokens on the outer ring occupy 

the same arc.  By interpretation, this is a slice in which, 

in respect to properties modelled in E3, the two pointers 

are wholly indistinguishable. 

As proposed above, we shall now modify Dl so as to 

make the two pointers more distinguishable, this time 

preserving the property of Dl which prevents the pointers 

from passing one another. 

E4. 

•    —  *     ■ • ' * ' * •  l  »^ • ••  

In E4 the events are represented by vertices instead of 
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line segments and the conditions are represented by arcs, 

as before.  The basic parts of E4 are the following: 

E5. 

.1  Pointer 1 

vertices named by 

unprimed numbers 

.2 Pointer 2 

vertices named by 

primed numbers 

.3 Sector i 

fl pointer 1 is in 
sector i 

r2 sector empty, ready 
for pointer 2 

f2 pointer 2 is in 
sector i 

rl sector empty, ready 
for pointer 1 

F.  Events in Conflict 

Thus far, we have said nothing about choice among 

alternative events, but the ability to express this is 

also fundamental.  Choices among alternative events may 

have many meanings:  whether the next i.iput is a zero or 

a one, whether a given server will next serve a particular 

one among a set of waiting users; whether a delay will 
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occur or not; etc. etc. Onco acjain we will indicate by 

a simple example, how such choices are expressed. 

Assume that we have a sequence of "cells" each with 

three states, empty, zero and one.  If the cell is in 

state zero or in state one we can say that it contains a 

value.  If a cell has a value it will pass it to its next 

neighbor. 

To represent this we must replace the arrow symbol 

which was used above for conditions by another symbol.  It 

was true for all conditions we previously depicted that all 

of their holdings began with occurrences of the same event, 

and ended with occurrences of the same event, depicted by 

the drawing: 
 j>. 

event  1   condition     event  2 
a 

In our new example we will expect some holdings of cell  i 

is empty to be replaced by cell i contains a zero (iO for 

short) and others by cell  i contains a one (il) .  Similarly, 

cell i  is empty (ie) will sometimes replace cell i 

contains a zero and sometimes cell  i contains a one.  We 

can picture these relations thus: 

Fl. o represents a condition 

represents ah 
event 
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The black dot in Fl is a toknn which represents a holding 

of iO . We could now use Fl to generate pictures of 

holdings and occurrences in the same way as in Bl, keeping 

in mind that any given holding of ie can only end with 

exactly one occurrence, hence an occurrence of rO or 

of rl exclusively, and begins with exactly one occurrence, 

hence an occurrence of tO or tl exclusively. 

F2. 

». . •  c>  
iO   ie 

—t^. ti»» o-'  

il  ie   iO   ie   iO ie   il 

About the events in Fl we can say:  rO and rl are 

in forwards conflict because, in slices in which ie holds, 

a holding of ie may end with an occurrence of the one 

or of the other, exclusively; tO  and tl are in backwards 

conflict because, in slices in which ie holds, holding of 

ie may begin with an occurrence of tO or tl exclusively. 

Now we can show a construction of a sequence of such 

cells. 

JSMII 
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F4 shows some holdings and occurrences related to F3 where 

the occurrences ending successive holdings of le were 

chosen arbitrarily.  The dark arcs represent the slice 

which is shov/n in F3. 

1 le/ll le AlO lo<AlO I« All 1 

1 2e/ \21 2e ^21 2e/2p 2e  -20 2e/ \21 2e/ / V y V 
31  3ä    \n.   3e     31   3r/    ^30   3e    ^0  3e/   N31   / 3e 

11 4e    41  4e'   \l   4e    \40  4e<A40  4e   \41 •; V/ \ / v V x 

G.  Axioms of Equivalence 

Systems, according to our view, are collections of 

holdings and occurrences, related to one another by begin 

and end and grouped into condition classes and event classes. 

In the discussion so far we have shown two kinds of pictures, 

both in the form of graphs:  pictures of holdings and 

occurrences, and pictures of systematically related conditions 

and events.  These latter pictures included so-called tokens 

to show concurrent sets of condition holdings. 

We are now concerned with  establishing principles for 

the grouping of holdings into condition classes and occurrences 
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into event classes. Of interest to us will be groupings 

which are partitions. Such partitions can be thought of 

as equivalence relations. 

Gl. .1 h. _  h 
1  c 2 

h.  is condition equivalent 

to h- , meaning for all 

conditions c ,  h, c c iff 

h2 e c 

.2 x = e y X is event equivalent to y , 

meaning for all events e , 

x e e iff y e e 

Now a crucial question arises for the description 

of systems. What are "the rules which govern translating 

one's knowledge of condition holding into one's knowledge 

of event occurrence, and vice versa? More formally ex- 

pressed, how shall the notions same condition  (h, =  h«) 

relate to the notion same event  (x = m y)  7 

There are various sensible criteria one could introduce 

with various consequences for the class of system descriptions 

obtained. We will mention several criteria of interest to us. 

A thorough study of the subject introduced by such criteria 

is, however, beyond the scope of this presentation. 

The first criterion, which we will assume as given for 
• ■ •    • •  ■•.' .'•.■•■•..«■■.•.'.-». ■ ••* \ . ■' , •   •■..,/.»■■•.., 

all system descriptions discussed in this report is: 
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G?,.  Any two occurrences of the same event end holdings 

of the same set of conditions (if any) and begin 

holdings of the same set of conditions. 

We can express G2 more formally as follows.  Call two sets 

of holdings condition equivalent if there is a 1-1 

correspondence between the two sets with all matched pairs 

being condition equivalent.  Then, 

02'. x = e y => -x = c 'y 

and x =  y => x* E  y* 
e ^        c 

A further set of criteria of which we will make occasional 

use, singly or in combination, are the following; 

G3. .1   h1 H c h2 => •h1 H e 'hj 

.2  h1 H c h^  •h1 =-  e 'h, 

.3  h. I M h, -» hi    E  h* 1  c 2    1   e 2 

.4  h. =  h,o= h.*  i  hi 
1  c 2    1   e 2 

Now suppose we use the two symbols for conditions and 

events introduced in Fl: 

conditions: 

events: 

o 
• «, . ••.•„, J «•. 

! 
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and  interpret  the relation 

o— as:  any occurrence of e ends 

one holding of c , 
c     e 

and the relation 

o as:  any occurrence of e begins 

one holding of  c . 

c     e 

Then we can translate the criteria expressed in G3 into 

• 
picture s. 

1 G3.1 
■ 

excludes 

G3.2 excludes 

(53.3 excludes 

G3.4 excludes 

—o 

o- 
/ 

G4.  .1 Example Al satisfies all four criteria, and is 

the only example shown which does this. 

.2 All subsequent examples up to (but not including 

Fl) satisfy G3.1 and G3.3 but not G3.2 and G3.4. 

.3 Fl satisfifes G3.2 and G3.4, but not G3.1 and G3.3. •' 

.4 F3 satisfies none of the four criteria. 
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It would be interesting to study various existing 

formalized methods of describing events and conditions in 

regard to their "axioms of equivalence".  Here we would 

only like to point out that everything described by a 

state transition diagram conforms to C2,   and G3.2 and G3.4 

if one interprets the states as conditions and the transitions 

as events.  Descriptions which satisfy G2, G3.1 and U3.3 

arc what we call marked graphs.  Descriptions which satisfy 

G2 only, we have called Petri nets.  Thus we see that 

marked graphs and state transition diagrams are examples 

of Petri nets subject to particular (and, in a certain 

sense, dual) restrictions. 

Crudely, one could express the difference between 

these two specializations thus: narked graphs allow 

concurrency, but no conflict; state transition diagrams 

allow conflict but no concurrency.  Petri nets allow both. 

H.  Petri Wets 

In the preceding section,  a notation was Introduced 

for representing  the conditions and events associated with 

a set of holdings  and occurrences which satijfios axiom G2. 

Such a representation is called a Petri Net. 

HI.     In a Petri net,  conditions arc represented by circlast 

C j      called places and events are represented by bars: 

called transition«.     Arrows between  these symbols have  the 

"~ 

■~r 
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of  •*•*%     • 
MM hoUAaf of ooaditloa    c 

it     tvvry occurrcnr« of OVMI    • 
oo« liolAiag of    e . 

follOtflMf Mlifil 

o—H 
o • 

I—o 
• e 

«• will »oattiao« wmm «rrow« to rttprwoot pUoe« or 

transitions which,  if  indiootod •«plloitly«««ottl4 only hovo 

on« inoooi^ arrov and ono oot^oinf am«.    Thooi 

o-o —• 0-+-0 
Finally, «• will taa« a dot  •  intarchan^ssbly with tha 

transition syabolt 

Ihus      A aaans V 
112.  If, in a Patri not, wo «iah to ropraaont a holding of 

a condition e t wa plaoa a tokan on tha oorroaponding 

place.  The function which specifios tha nvMbor of tokens 

«l nach place in a Patri not is called tha isarfcinq of tha net. 
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■o heldings of e i \~yP 

Om holdii^ of e i (•)? 

fwo holdiog« of e i  <J\p 

If ovory eonditloo which is r*r    for • cct   *ir 

it  holds* on occurronos of that ovont tskss plsos. this 

oocurrooos oods • oortsin sot of holdings sod begins s 

osrtsin sot of holding«. In s Fotri not wo roprosont an 

oocurronoo of ovont o by firing tho transition l which 

roprotsnta o t 

( • 

this is accoaplishsd by removing one token fro« tho 

placss which haws arrows pointing to t and than adding 

on« tokan to tho places to which t points i 

t firs« 

i 
— 
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83. Me are partirulerly interested in Petri net« which 

•atiafy certain constraints Mentioned in section C: 

G3.1 axcludcs 

63.2 excludes 
^ 

o 

Ü. 

Q 
0 

G3.3 excludes 

G3.4 exclude» 

A Petri net which satisfies G3.1 and 03.3 is called a 

—rked graph. A Petri net which satisfies 03.2 and 03.4 

is called a stato machine graph. 

Using the conventions in HI, every place in a Marked 

graph May be represented as an arrow; every transition in a 

state Machine graph May be represented as an arrow. 



Those special types of Potri nots are illustrated in the 

table below: 

Is it a marked graph? 

Is it a 

state 

nachino 

graph? 

Y 
c 
I 

N 
o 

Yes No 

.W / 

/x) o 

The firing rule is applicable to all four of these Petri 

nets. Hero aie the auirkingo after firing the transitions 

■arked x t 

% • . ■■ .  •■»•%, 
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H4,  Marking Classes 

If    M    is a narking of a Petri not and    a    is a non- 

oiapty sequence of firings which is possible starting at    M  , 

we say    Mlo)    exists.     If the result of this sequence is 

a marking    H%   , we say    M|o>   - H»    or simply write    MUrtM'   . 
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» 

If there exists a a such that Mi^M' we say M leads 

to M« , written M[->M' . M is the se t of mar)' .ings M' 

such that MI^M* ; M is the set of markings M' such 

that M' [->M . M is M u M and is called the marking 

class of H . 

H4.1.    A marking M of a net is said to be live if 

M* e (M) U M implies that for any transition t , 

there exists an M" e M' such that t is firable 

in M" . 

H4.2.   A marking M is said to be safe if M' e {M} U M 

implies that M'  places at most one token on any 

place. 

All the examples in section H3 are both live and safe. 

If a maxked graph or state machine graph is strongly 

connected*, it has a live safe marking.  A strongly 

connected state machine has only one live and sate marking 

class; any marking which places only one token on the net 

is a member of this class. 

A marked graph may have several marking classes.  A 

procedure is given in Chapter V, Section P, page 111 

tor finding a live safe marking for a strongly connected 

graph. 

*»trongly connected means:  There exists a directed 
path from any vertex to any vertex. 

v.. ^. 
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MODELLING PRODUCTION FACILITIES 

In this chapter, we will show how to use Petri nets 

for building models of production facilities.  We will 

place particular emphasis on whatever can be modelled by 

marked graphs because we can analyze marked graphs for 

their interesting properties.  We cannot do this yet for 

wider classes of nets.    What is described in this 

chapter is only one way,among many,to build Petri nets 

with an interpretation. 

A production schema is a description of a production 

facility which repeatedly converts certain inputs to certain 

outputs.  Although it is redundant to say "repeated use of 

a facility" (since facilities are established for repeated 

use), the emphasis is important.  Petri nets in general 

and marked graphs in particular arc primarily concerned 

with interrelated cycles of activity, rather than finite 

sequences with beginnings and endings.  (While in many 

schemes of analysis, cycles are treated by cutting them 

open, our techniques often make it desirable to close open 

stretches so as to form cycles.) 

An example of a facility might be an automobile factory. 

Here the primary inputs are concrete objects and materials 

such as rolls of plastic, sheets of -total, cans of paint, 

boxes of rivets, «to.; the primary outputs are also con- 

crete objects such as oportscars, sedans, panel trucks, etc. 
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A second example of a production facility is an 

assemblage of computing equipment coordinated by some 

combination of plug boards and/or programs to accomplish 

inventory control.  Here the inputs are more abstract, 

namely symbolic expressions representing arrivals and 

departures of inventoried items,while the outputs are 

again symbolic expressions representing reports on the 

status of the stock. 

Although both of the above examples are relatively 

"large" systems — many parts and many sub-processes — 

that is not a necessary feature of what could be usefully 

treated; the task could be to describe and analyze a 

facility which computes c(a+b)  from the inputs a,b, 

and c . 

Most of the operations in the above examples can be 

thought of as operations of assembly — i.e., the putting 

together of parts to make a single whole.  Thus in computing 

c(a>b) ,  a and b are "assembled" to produce ft + b 

which, together with c , is assembled to produce the 

result.  We are however, also interested in productions 

which are, in part or in whole, disassembly;  for example, 

unpacking a crate which contains many packages (of packages). 

In computing, a disassembly could bo the unpacking in 

memory of a complex record brought in from secondary storage. 

Or, it might mean the multiple copying of a single value for 

concurrent use by sovvral processes. 
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A.  The Components of Doscription 

To construct our models, we let the events be pro- 

duction events, and the conditions be the states of readiness 

of various materials for participation in production events. 

Examples: 

v       w 
c  a cup is now ready for 

x to occur 
Al. \>/ ;;  a saucer is now ready 

for x to occur 
x  assenbly of a cup and 

saucer 
c.s  a cup and saucer ar« now 

ready for y to occur. 

A2.  Comme.iutt 

.1 Within a given cycle of manufacture there miqht b« 

several distinct "tiroes" and/or distinct "places" 

at which a cup and saucer are asseablad. All of those 

would appear as separat« events in the model. 

.2 There are many possible interpretations for the 

event w  (which produces the ready saucer). Zt 

sdght be an «vent which transports the saucer to 

a designated physical place where the assaabiy can 

take place} it night be an event which results in 

saucers being dry so that they can be assembled. 

• 3 Suppose there were two tokens on the are representing 

the saucer condition.  It would swan two saucers     • • ' 

ready to participate in x . In a given production 
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schema this poAsibility auiy have been part of the 

intention, but in another, it may represent an 

unintentional erro^.  Here are two reasons why it 

■drjht be an erroi . 

For two naucors to be ready would probably 

have to mean a saucer storaqe with a capacity for 

two-or-more saucers connected to the active agent 

which assembles cups and saucers. The concurrent 

appearance of two ready saucets would certainly 

be an error if the actual saucer capacity at that 

point in the system is one. 

A second difficulty might srise from the fact 

that two tokens on that arc represent two ready 

saucers not distinguishable from one another with 

respect to the event x . Now if it is essential 

to proper production that the samoers and the cups 

flow through the system in strict sequence and, 

st the assembly point, become paired, n   saucer 

to nth cup, then two tokens on the arc must be 

sn error. If two saucers are now reedy there is no 

guarantee which one will be ssseafeled with the 

next cup. This latter kind of reason im  often of 

importance in models of algorithms where the cups 

end saucers are values being assembled by arithmetic 

operations.  In that context it is on—nn that the 
• •        • 

several values to be combined by the slgorithm com* 
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in related "waves* and it is an error when there 

is no guarantee that the noxt valu« of s swats 

the next value of c . As vas already mentioned 

in the last chapter« graphs in which no condition 

syafcol over holds sore than one token, are called 

ssfe. 

A vortex with soversl input arcs and only one output arc 

represents a pur« assewhly operation. A vertex with 

soversl outputs but only one input represents s pur« 

dlssssssfely operstion. Thar« will also be vsrtices which 

have aultiple inputs end aultipla outputs. 

Consider* for oxaMpl«, the following parenthesis 

structurot 

(( )(» »)) 

It might ropresont an arithaatic expression to be ovsloatad 

by a partial ordering of asaaably atopai 

A). 

or a nested set of boxes to be unpacked (arithaetic 

«xpression to bo parsed?) by s partial ordering of dis- 

aaseably eparstionsi 
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C.    rriaary flow 

Ualnf Mrfced qrmph* only, pwimmrf Ho* aintotur« will 

hm m p*t%icl orderlA^.    «oro 1« • typical «MflpU. 

Cl. 

.1    k facility for oaop«ti»9 IMO output■.    A 

fro« two Input«.    »   and    y , tfufln^ 4M foil 
C r» 
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Lmt mm 9— wfcftt t lyyMi  if «• tskm Ci.2 m a CIAUIM« 

predoetion •dhmm» for Cl.l.    TfcU —mi study in) tb« 

properties of Cl.2 m» m —rliod 9rsph.    py spplylo^ the 

firinf rule to Cl.2 mm m —rtiod frsph« ooo OM 

to Motor* oorfclo^ by flriof the P-levol vorti« 

orbitrerily aooy tlaoe ooooorreotly  (or* ooo ooold 

bocbworde to *eorlior* Mrfclope by firiog the level S 

vorUoe« bocbwerde, orbitrerily eeoy tlaoo ooooorrootly). 

Tboe(  «elof the flriof role «oreetreloedly. ooo ovoltf 

•flood* Cl.2.    Oooe tboro ere lote of tobooe oo tbo frepb. 

fire eey o«*or of sort lot« of tbo frepb eoy 

of tlooe ooooorreotly.    «ere le e portlel orderlef 

toollor tbeo Cl.2 oltb oblcb «o oeo llloetrete tbeee 

bilitiee of oertlooe ond flrloot. 
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It Cl.a  is i»t«rpr«t«d by UM Mrkcd qr*ph  firing mU 

it «ill b^uiv« In thm way «• jvst illiwtrat«dv and that 

will Mka it a bad nodal for Cl.l for aawral aanantic 

raaaon*. 

first,  if ona aas«Maa that avarv holding ragalraa tha 

waa of aooa r—oarca (a.f. a atorafa aait) and ßja^ 

lni>ol^aa tha aaa of aaaa raaoarca Ca.f. a 

lt|  than Cl.l aodala a facility with aaboandad 

if contrary to natural aatonptlona aboct facllltioa. 

Ily,  If tha oonatrwc-iion of oatpata fro« Inpata la 

iotarpratcd aa arlthoctic avalaatloa,  then coa ahoald 

diffaraat.    la the cporatlca of Cl.l no ordar la kapt la the 

pr^tt aaaoclatlona of aaooaaalwt   a • y   paira« aor can one 

hacw which aatpau ralata to whlah inpata.     itoth of thaaa 

dlfflcwltiaa war* Juarlhid la fanaral taran U IU.1.) 

•Inoa plctaraa wary alnllar Iff not Idantloal to Cl.a 

ara offtan aaad to raptiamt lafomntion flow la a mmjelmtiom 

whlA follow ft an mtnrprwUnf Cl.l an a nartad frayh.  It 

id IntaraaUaf to «Mil brlafly an aaaa off the diflatoacan 

Still aalnf the oanoapta off «artoa (frinpt and 

tranaport. wa aowld *aparata* tha praph aa ffollowai 
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. 1    Btqin by putting ono token on ••c* of the two 

•re«    K   and   y    botwocn levels    •    «»4    1 • 

.2    fire other vertioes la any order that la poealble 

Ifor exanple level by level). 

.3   jg{4 »rhen the tolteee heve arrived ee the output 

.    A 

With the iaterpretatlon Cl. beflnaUf and andlaf are apeeial 

proeeduree.    Revlaf 'operated* the freph oaee« one can of 

>, operate It Ofaln by relnltlallilnf.    tot the 

oontirelat vhtoh preventa relaliullrlnf «ntl! 

the laet oneretlen la eoaplete la only inplied by the 

*opereUnf rule* CJ. In oontreet to the nnaenoi oonetmlnu 

eapreeeed «Ithin the dlefra».    After the neat follf^vlnf 

dlaoeealon of bnoh floe«  It will beoene olenr hoe the Intent 

off C> ooeld be i^reiml by the nerhed fraph flrlnf mlo. 

b. 

Worn oon one ootrect the deffecte of C1.2 

iaborpretetlon?   ho It tome net both 

llinf finite faollity rweeroeo and Ineorlnf 

•nf off  Itena thro«#i the foolllty — oen bo ool 

by the eana neent. 

Uaita eon bo placed on the need f 

ovnll^lo faollltleo by tafelnf another cU^ 

o«t£ut« into eoooont. timlt nri InlT 
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yd pcrmi»« irmu,    Ifcero mrm  or<ter> (pcrml»»ton«) for cmtpwt 

«liich travel fron the «nvironAont to the facility, «ad ai«- 

tkor«fort ln|*ut« to tho facility, ttioro »f  «Uo order« 

(perwiMiomO for input which travel froa the facility to 

MM «nvirenaent aad are therefore output« froa the facility 

Plaally, there are order« (penUsaioaa) which are paaaed 

iatemally froa oae production event s to another one y 

if y U reepoaaible Cor eoae part of tike input to a • 

«a ahall aast ahew a aerie« of picture« uhioh aerve to 

esplaia how the flaw of order« aad perai««ion« — bach fl 

far ahort — help to aedal a prodactiea facility, 

picture« will be built an the fifarei 

ablcb repreeeata eoae arbitrary pclaary flaw CU th« 

af aacbed «rtfba* a partial ardarlafl with two prlanry 

lapeta aad aaa priaary eetput. 
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An A-itc« is availAblo 
to th« facility 

rhe  fAClllty KM 
mn  A-ito« 

An order for an A-l( 
Is svsiUbls to tho 
•nvironaoot 

The envirooasnt bss 
rooolvod en order for 
en A-i« 

end slnllnrly for ■ Mi C 

■oe let «0 oonslder the ceee wbere the envl 

sehoii e new order for ootpet «nless the lent 

delivered end the feelllty lUewiee will not 

ordere «nloes the lent order for inpet hoe 

Mi oen repreeent this hy pettlnf one 

three ciroolu In 01.1. 

it will not 

delivered. 

of the 

.2 
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«• mmt no*  diqroas briefly to point oot •amm  fund«- 

■cntal facts «boot o«rtod graph« 

\,    In any markad «rapli( tha nanbar of tokans on 

circuit can navar ba char«; i by vartaa firing« 

Ibis is baoaaaa any circuit Mat antar aay vartas is tha 

graph tha aaoa niabar of tiass that it aalt« fro« it. On 

tha etbar bsotf a usrtas flrinf taka« ona tokan froo ovary 

antarinf are sod pots ona tobao on auory outgoing ore. 

Tbar»fore in 01.2 lhara will nauar bo «ore tbso one toboo 

•o any of the ores h|, 9| or C| . 

k circuit is s sorbad grspb obieb bos esoctly one 

token on it is eelled s bnsie circoit. lbs three clroolts 

in 01.t sre bosle eircults. If oo regard the euents sod 

itiooa en e elreelt ae the f^Bttü of the eireoit «e 

• 

01. 

hoy two dlatloot alaooots on s bosle eireoit oo«t 

*ol lotos to*,    for eaanpU. after a holding of    0| 

and before the oaot boldlog of   0| , tboro oast bo o 

holding of    b, • ssseolog that    0|    and   ba    ore oo 

• booie eireoiti and sUMlarly for oecocteooa of 

to 01.1 the aoeiroooaot 

(or so b-itoo st s tim, sod the facility never boodlae 
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■or« th«» on» A-iton at • tiaa. NotiM «1M thai UM AT« 

Ubollod Ä • which U part of prlaary flow Cor th« faeillty 

ooald ba vlawod aa bach-flow for tha aawii awiimtt UM 

delivery of tha aast h-ltaa oaa ba latarpratotf aa a par- 

«iaaloa fiwaa to tba faeillty to «allwar tha aaat ordar for 

aa A*ltao. 

Oaaaidar aaat a aodlfloatioa of 01.2. bat tba aaoat 

which yields a 1 i^at and tba aaaat wbiab ylald« a aaw 

ordar for oatnit (?|) ba oolacidaat. la ptofi—»laf« 

tblc la tba oaaa if oach «ail oa a aabroatiaa Ctba facility) 

la ■eeoiiiaiad by a parcoator apaclfioatioa «blab la aithar 

part-or-all of tba iapwi oa which tba rowtiaa aast aparata. 

It la atao tba oaaa with aboa rapalr abora. fbo dcllvary 

of tba ord»r for a rapair oolacidM with dallwariaf tha 

.1 

- 



n 
n 

M>t«t     if «• iqßon ihm «ctu«l li«A4llAf ot oröar» by 

facility,  thm* tte facility aodallad by M.l U tb« 

.1 

«rrow m D4.2 »ervM as • wUtor tb«t 

it    «    U fMtuiuM to b« b«for« lb« «««it   y 

prUMry flow im MiilUi M a fartUl ortor with    y   «ai 

■   M Its oaly MfliMt ill—if aai   v   M it« «aly UiMt 

Ü 

0 
c 

«• OM Ma tbat tba aftoct of Iba «re    ca    with ita 

UM aoAal la to aafca aaaty prUMry flow falb tnm 

■    to   y    a fart of a baaic circuit.    iborofora, by 01, aay 
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In D4.4 back flow ha.s been represented by a single arc. 

Following the model of D4.4, we could also introduce back 

flow in C1.2 as follows: 

b 

D5. "* 

e 

This completion would correspond to the following set of 

semantic assumptions about the operation of the facility. 

D6.  .1 That the events which deliver the next value of 

x ,   the next value of y and the order for the 

next computation all coincide  (b) ; 

,2 That the events of receipt by the environment of 

the next A output value, the next B output 

value, and permission to generate a new order all 

coincide  Ce) ; 

.3 That there is never, more than one order, or one 

permission for an order  (E) outstanding at any 

one time. 
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Now notice that D5 v/ith the marked graph firing rule 

behaves exactly as C1.2 would under the special rule C3. 

Relative to rule C3, however, we have made substantial 

formal and semantic gains.  First, initialization and 

termination have brcome event fiv-.ngs no different from 

any other in the schema; second, we have shown these rules 

to follow from a special set of scnantic assumptions 

(DG.l - .3) about the way in which the facility relate . to 

its environment.  Other assumptions lead to other back 

flows. 

One can think of D5 as illustrating a standard 

paradigm for turning a piim.'.ry flow diagram into a live 

and safe marked graph (see Chapter II, H4.1, .2 for 

definition).  The paradigm is: 

/ 

D7.  .1 Identify all environment output collecting events 

to become a single event; 

.2 Identify all environment input delivery events 

to become a single event; 

.3 Add a back arc — from collecting event to 

delivery event — with a token. 

That a live and safe marked graph is prodaced in this way is 

proved in Chapter V. 

In regard to the production facility, liveness means 

that the facility is so designed that it can continue to 

operate indefinitely. Safety means that there are never ;    j. mm 

two concurrent holdings of the same condition or two 

/ 
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concurrent occurrences of the same event.l     This implies 

for finite primary flow, that the facility can be operated 

with a finite s^t of processor storage units. 

There is another standard paradigm for adding back 

flow to primary flow in order to produce a live and safe 

narked graph, illustrated by the next figure. 

D8. 

0 
0 
D 
[ 

The rule is: 

D9.  To each primary flow arc, add a back arc with a token. 

That this procedure produces live and safe marked graphs is 

proved in Chapter V. 

One can express D9 as a policy in the design of.  a 

'Safety also has something to do with the concept of ■ ■ 
"functionality" — i.e. that successive outputs are functions 
of successive inputs and of nothing else — but this topic is 
beyond the scope of this presentation. 
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production facility, namely:  at every point, give orders/ 

permissions for re-supply at the earliest time possible. 

This policy has the efiect of maximizing concurrency in 

the operation of the facility and minimizing throughput 

rates.  Other policies can be represented by yet other 

procedures for introducing back flow, but further dis- 

cussion of this subject goes beyond the bounds of this 

presentation.  Theorems pertaining to the evaluation of 

the degree of concurrency and to throughput rates are 

presented in Chapter V.  Roughly, one can state:  higher 

orders of concurrency represent greater demands on production 

resources, but tend to increase rates of throughput. 

E.  Internal Circuits 

In addition to representing the flow of materials and 

orders through the facility one can also represent the 

flow of internal resources which may be reassigned to 

participate in v^ious production events. 

We may expand our picture of a single production event 

so as to show how reassignable resources participate in it. 

Example: 

El. 

.1 • x 

■■>— - 
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.2  (This is an expansion of Point I.) 

Event I shows an 
available storage unit 
S^ being filled with a 

Event 2,   similarly for 
So and b 

Event 3 shows an available 
processor P beginning 
to perform X 

Event 4 shows storage unit 
S]^ being released for 

reassignment 

Event 5, similarly for S2 

Event 6 shows the commitment 
of c-. storage unit S3 to the 
holding of the 
output C 

Event 7 shows the processor 
P released for re- 
assignment 

i 

0 
D 
i: 

Now consider a facility in which there are N events, each 

requiring an identical reallocatable unit (e.g.  N add 

events each requiring a given type and size of adder, or 

N storage events each requiring a given type and size of 

storage unit.  One can examine the consequences of estab- 

lishing a definite cyclic schedule.of allocation for units 

of the required type. 

—— 
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E2. 

Figure E2 proposes an example where there are four such 

events,  1,2,3 awi    4  and a particular cyclic schedule 

(one out of the six possible) for three identical resource 

units.  Various questions now arise. 

ii 

E3.  .1 Is the new marked graph still live? If not, there 

may be some other way of distributing the three 

units on the circuit so as to yield a live graph. 

Or, one may discover four units are necessary. 

.2 The token distribution on the circuit shown in 

E2 is not safe. It may be desired to find a safe 

distribution because it would remove the need for 

arbitration. 

,3 What is the largest number of units which could 

(      be used on the circuit to advantage — meaning 

that no larger number would increase the effective 

throughput rate and no smaller number would permit 
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as high a one. 

Theorems arc proved in Chf.pter V which provide algorithmic 

techniques for answering such questions. 

While, with irarked graphs one can explore the effect 

of various fixed cyclic schedules of allocation, one cannot 

represent and analyze the effect of resource pools.  The 

next figure shows how, using a place connected to more 

transitions than is allowed in a marked graph, one can 

replace the circuit in E2 by a pool. 

E4. 

0 
I 
D 
.11 

The effect of this arrangement is to insure that there will 

never be more them three concurrent firings among the 

transitions 1,2,3, and 4 . 

There are other limitations on the descriptive power 

of marked graph models.  Roughly speaking, one cannot model 

the effects of decisions with data dependent outcome, noir 



59. 

can ona conveniently model facilities in which each 

successive output requires the multiple traverse of 

various internal production cycles, some only a few times 

and others many times.  These descriptive abilities also 

require the use of a mere general class of Petri nets which 

we are not yet in a position to discuss systematically. 
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PREVIEW OF MARKED GRAPHS 

The last chapter meant to cjive the reader some feel for 

how to apply meaning to marked graohs.  This chapter means 

to give the reader some feel for how to apply mathematics to 

marked graphs.  The results described and illustrated here 

are a significant sampling of the material in Chapter V 

where notations, proofs and algorithms are presented for 

the first time. 

Many theorems in Chapter V concern the existence of 

certain markings or firing sequences in marked graphs under 

specified conditions. The proofs of these theorems provide 

efficient algorithms for determining whether or not the con- 

ditions hold, and constructing the marking on firing sequence 

if they do. 

Liveness 

The most inportant question about a production facility 

is: Will it operate? Will it function properly or are 

deadlocks present which may cause parts of it to halt? 

In a marked graph model of a production facility, we 

define a vertex to be live if it may fire at some time.  A 

vertex which is not live is said to be dead. 

Our first theorem gives a necessary and sufficient 

condition for a vertex to be live. 

.11  " 

Theorem 1;  A vertex is live if and only if it is not contained 

in a blank circuit or a blank path from a blank circuit.  (A 

set of arcs in a marked graph is said to be blank if it 
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contains no tokens.) 

Example: 

[ 
n 

1 

~ 

D 
i: 

o 

:^^ 

In this marked graph, the vertices a , b ,  and f are 

live.  The vertices  c and d are contained in a blank 

circuit and the vertex e is contained in a blank path 

from this circuit. 

Even if a vertex is live it may only be able to fire 

a limited number of times.  Vertex f above, for example, 

can fire only once. 

Our next theorem gives a criterion for determining 

how many times a vertex v can fire starting from a given 

marking M . We call this number D
M(
V) • 

Theorem 2;  In a marked graph witn marking M , DM^V^  ^
S 

equal to the smallest number of tokens on a path from a 

dead vertex to v .  (See example. Chapter V, page 91). 

This theorem may be used to analyze the behavior of 

a production facility if some necessary commodity is cut 

off.  We can represent this cut-off by placing a blank 

self loop on the vertex which represents the event which 

produces the commodity. 
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Supply vertex 
for 
commodity 

Cut-off 
o.^ 
commodity 

Theorem 2 then tells us how far the procedure will go 

without further supply of this item.  It follows from 

Theorem 2 that if a marked graph contains no dead 

vertices every vertex may fire an unlimited number of . 

times. 

Such a marked graph is said to be live. 

Achicvability Tests in Live Graphs 

In a live graph we may wish to know if a certain 

marking is achievable from a given marking M .  Suppose 

we have a certain test marking T and we wish to know if 

M leads to a marking M'  which contains T .  Our next 

theorem provides a test to determine whether or not this is 

possible. "" 

Theorem 3;  In a live graph with marking M , let T be 

a test marking.  M leads to a marking M' which contains 

T if and only if, for every circuit C , M places at 

least as many tokens on C as T places on C . 

The proof of this theorem provides an algorithm which, 

if the circuit condition is satisfied, constructs a firing 

sequence which results in a marking M' which contains T . 

J_ 
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Example: 

M: 

Can the vertices x and y fire concurrently? To find out, 

we use a test marking which makes both vertices firable. 

^'~ ^^P" 
T: 

The marking T places at most one token on each circuit 

(C,,C2/ C- and C^).  The marking M places one token on 

each circuit.  Thus M leads to a marking M1  which 

contains  T : 

M: 

J fire v 

y 

fire z 

JC7. 

x^0-^.7 ^e-^y "-—^z "-^^^v 
I fire v and y 

M': 

*^6^ 

I fire z and w 

^w^O-^: ^;^-o  ^v 
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The next theorem allows us to determine whether one 

■rr:rking  leads to another. 

Theorem 4; In a live graph with marking M ,  M leads to 

M'  if and only if M and M1  place the same number of 

irrilens on every circuit. 

It may also be shown that: 

Theorem 5;  If M is live and M l^ads to M'  then M1 

leads to M . 

Chapter V, Section E contains theorems similar to 

Theorems 3 and 4 which do not assume either liveness or 

strong connectivity. 

\ 
Maxima and Minima 

i 
Imagine a counter attached to each vertex in a marked 

graph which counts the number of times the vertex fires. 

We may wish to determine what the maximal or minimal value 

is of some function of these counter values.  One inter- 

pretation of the counter values is that each vertex represents 

an event which produces a profit or loss to a business.  In 

this case we may wish to determine what is the minimum 

amount of capital required to prevent the business from 

going into debt.  (See example, Chapter V, Section G, page 127.) 

If the counter function is linear we have theorems which 

provide algorithms for determining what the optimal value 

of the function is and constructing an optimal sequence of 

vertex firings. 
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One interesting linear function of these counter 

values is the function aixi  + a^^..-* an
x
n where the 

x.  is the value of the counter on the vertex v. .  The 

coefficient a-  is equal to the number of output arcs of 

v.  minus the number of input arcs of v. . 

Example: 

ai ■ +2 

Ü 

I 

i: 

i. 

i; 

Clearly a.  is the net increase in marking size produced 

by a firing of v. .  This marking size function gives us 

a special case of the previously mentioned theorem.  Thus 

we have a criterion for determining the number of tokens in 

"largest" marking M1  to which a given marking M leads. 

Theorem 6;  Let g be a marked graph with marking M . 

The maximum number of tokens in a marking which M leads 

to is equal to the minimal number of tokens placed by M 

on a circuit which contains all the arcs of g . 

Example: 

The largest marking which M leads to has size 4. 

A minimum circuit which contains every arc is 

C = (abcdecafgecafhi) .  C passes through the arc c 
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three tildes and once through the arc i . Thus C has 

4 tokens. 

Here is a sequence of firings which brings us to the 

largest marking: 

*■—v 

i 

after firing a 

J 
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I 

0. 
0 

fire c . 

This is a largest marking. 

Now we return to the original 

marking. 

fire £ and e , 

fire f 

'VvH> 
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The size of the largest marking tells us how many processors 

would be required to perform a given cyclic task represented 

as a marked graph if no new timing restrictions are to result 

from the allocation of processors. 

In the preceding example, one possible allocation is: 

processor 
number 

cyclic schedule 
of tasks 

The route of: processor 3 is shown in the graph. 

Safety 

An arc in a marked graph is said to be safe if the maximum 

number of tokens which may ever appear on that arc is 1. '* 

Since a safe arc is either empty or has 1 token, it may be used 

IV 
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to represent a condition which either holds or docs not 

hold, o a proposition which is either true or false. 

Theorem:  An arc in a live marked graph is safe if and only 

if it is contained in a circuit with 1 token. 

Theorem 7;  Every strongly connected graph has a liw 

marking in which every arc is safe. 

-] 

n 

0 
1 

IJ 
D 

.D 

Example: 

A live and safe 

marked graph: 

For more examples 

see Chapter V, 

Section F. 

Throughput Rate 

If each vertex in the graph is assigned a time 

duration, we may wish to determine what is the maximum 

average rate of firings per unit time for some vertex. 

Theorem 8;  The maximum average firing rate is the same 

for all vertices and is equal to the minimum ratio of the 

number of tokens on a simple circuit to the sum of the 

time delays . of tlie vertices on the circuit.       '■■•>  •• 
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"I 

Example: 

\ 

V'i 

Each vertex in this graph is 

assigned a duration of 1. 

Each vertex can undergo one ,. 

firing every three time units, 

The circuit  (a,b,c)  has 1 token and 3 time units, giving 

a ratio of - .  We may double this ratio by adding an extra 

token to the graph.  (For more examples see Chapter V, 

Section H.)  Here are three marked graph implementations 

of the task represented by the production scheme: 

c» 

a c^, 

b y 

C ' 

a 

1.) 2.) 3.) 
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If each vertex firing requires 1 time unit, the average 

firing rates are: 

1.) 2.) 
1 
3 

3.)   3 

! 

D 
0 
[ 

, /  -  . ' 4.* 

mm 
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MARKED GRAPHS MATHEMATICS 

A. ' What is a Marked Graph? 

A marked graph is a directed graph with a set of 

designated arcs.  Arcs are designated by placing tokens 

on them. 

undesignated:  • — -t-. 

e.g. 

designated: .©. 

II 

D 

Designated arcs may contain several tokens: •—Q—(JJ)- »» 

One may think of the marking of a graph as the integer 

valued function which specifies, for each arc, the number 

of tokens placed upon it.  (If no arc has more than one 

token, then this function is just the characteristic 

function* of the set of designated arcs.) 

D 

Example: 

A Marked Graph: 

*F is the characteristic furction of S means: 
x e S : =i> F(x) = 1 
x ^ S ; =t> F(x) = 0 

—< 

— 



T7 
0 

Q 

i 

D. 
D 
0 

73. 

Formally wo will define a marked graph «wv- thus: 

•M^ k      <<V,A, + ,i> ,M> 

where 1.  V is an at most denumerably infinite 

set of vertices. 

2. A is an at most denumerably infinite 

set of arcs. 

3. + and ♦ are functions, from A to V. 

+(a) is called the input vertex of a and 

+(a) is called the output vertex of a. 

Also if a e +" (v)  then a is called an 

output arc of v ; if a e +  (v) , then a 

is an input arc of v . 

A vertex may have only a finite number of 

input and output arcs. 

4. M is a function from A to the non-negative 

integers.  M is called the marking of r|,*vv. 

5. ^VfA/t/f^  is the graph of the marked graph. 

We will notationally treat ♦ and f as relations, thus: 

+ (a,x) A f(a) = x ; +(a,-) A + (a) and t(-,x) A {a: + (a) = x} . 

B.  The Firing Operation 

The firing operation is a type of transformation which taker, 

one marking of a graph into another: Any vertex all of whose 

incoming arcs are marked may be fired by removing one token 

from all its input arcs and adding, one token to all its. ..,.,,.; 

output arcsV" 

L. 
i i * 
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E.g.  Vertex v may be fired: 

We say that a marking M leads to a marking M' / symbolically 

MI-^M' , if there exists a finite non-empty sequence of 

firings which transforms M , step-wise into M* .  The 

definition of vertex firing makes clear that it is a re- 

versible operation which we will call backward firing the 

vertex.  We will write M^M1  if Ml^M1 or M1 = M . 

The notation M[x^,X2f x^.. .x "> M1 means that M can be 

transformed into M1 by the sequence of vertex firings 

x^,x2,x3...x  .  For a given finite sequence a , of vertex 

firings we will also write M[a>  to mean the marking 

M
,
|M[ö>M

I
 , and  [a>Ml  to mean the MIM^M1

 . 

Given a marked graph <^j/^ we can define the strong reach 
•y ->- 

of M denoted by M thus:  MA {M'IM^M1
} ; and the weak 

=0      =t> 
reach of M denoted by M thus M A {M1 |M[=>MI} . 

C. Paths and Tracks 

A path is a sequence of arcs ^»^^a* • ^n anc* a 

sequence of vertices XQ^WX,...^ such that the arc a. 

connects the vertices x. ,  and x- . We will denote 

paths by the following notations: 
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|ai'a2'a3---an 

or   ||XQ,X. ,x2.. .x   whicli could designate any path on v/hich 
the vertices appear in that order 

or Pa where a is a sequence of elements (arcs 
or vertices) and P is the name of the 
paths 

A forwards directed path P is one in which each arc a. 

connects 

x. ,  to x.  — i.e.  +(a.,x. ,)  and f(ai«Xj) — and can 
1 —J. 1 »1   1~J. -L   1 

  1>- ---; 1». 
be denoted by P|;XQ,xlfx2.. .x  or P|ja,,a2...a  . 

A backwards directed path is one in which each arc a- 
•<?■ 

connects    x^    to    ^^„i     and can be denoted by    P|JXQ,X, ...x 

or    P|(a1/a2> ..an     . 

Given    Pjja     , we say: 

If a    has an initial element x , then x is the 

initial element of P  ; 

If a has a terminal element y , then y is the 

terminal element of P ; 

If x and y exist, and x ^ y , then x and y 

are end points of P . 

To say P begins at x or P ends at y is to imply 

that x and y are end points. 

Any element of P which is not initial or terminal 

is called an inner element of P .   •. . 

If P has no endpoints, it is called a track. 
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If P has no terminal endpoint, it is called a 

forward track. 

If P has no initial endpoint, it is called a 

backward track. 

If the initial and terminal elements of P are the 

same,  P  is called a circuit. 

I 

Examples; 

»  » •     t^       ■ 1»»      t*  ft-    • 

P||x1x2x1 

-f^-   tt-     • » • 

—f!»   — 1»"       Pfc- » 

 IK——1>. 

P|x1x2x1x2x1 

xl 
xl 

none 

a path 

a track 

initial vertex of P 
terminal vertex of P 
an inner vertex of P 
endpoints of P 

P is a circuit 

P is a track 

(P is also a forward track 
and a backward track) 

a forward track 

a backward track 

a track 
P does not begin at x. 

This path begins at x and 
ends at y . 
Not a forward track, not a 
backward track, not a track. 

. .* " -i . <• 
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D,  Leng Dir, of Palhs rxnd  Gornionces 

Given a structure S with elements e and a property 

P we define: 

|JSIP| A The number of elements of S which have property P 

Examples; 
—  r». 

Assume p|i<a.>, £ i £ n is a directed path in 

^ - /<V,A,J,0 ,M> 

Then PA 

[P|M| 

If x e V 

then |p|x| 

l|P| + (-.x)|| 

the arc length of P , is the 
number of arcs in P . 

the token length of P , is the 
number of tokens on P : more 
exactly: 

n 
|IP|M|^ = I  MUi) . 

i-1 

the number of times that the 
vertex x appears as a vertex 
of the path. 

the number of arcs of P which 
are output arcs of x . 

We write  {P}  to mean the subgraph covered by the path P . 

||{P}|M|i the reduced token length of  P 
is the number of tokens on the 
subgraph which P covers. 
More exactly: 

|{P}|M|! - I      M(a) . 
ac{P} 

Ü- 

D 
i: 
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The graph rorv^Y 

The path P 

P I All = 6 

P | M|| - 5 

PHx^x^H =4 

P| U-x^H .2 

{P) | Mil =4 

{D | t(-. x2) || = 1 

The same notations can be used for arbitrary sequences, 

whether they are paths or not.  For example, if a is 

a sequence of vertices ^x^x^x^x^x^ then 

|| ö | x3 || =2.  Define 

|s|f(P1,P2,P3...Pn)|| A fC|ls|P1|i,||s|P2|I,|ls|P3||...||sIPn||) 

Example; 

|p|x1-X3|| =   IPlxiJl -   ||P|X31| =2-1 =  1 

i     .■.....,, 
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Theorem Dl 

Let MLx)!^1  and let P be a forward directed path.  Then 

|| P|M jl = || PJM' || if x is not an endpoint of P.  If P 

begins at x then  || PIM' || = || P|M || + 1 ; if P ends at 

x then  || P|M' I = || P|M || - 1 . 

■*■    Suppose x is not an endpoint of P.  Then 

jj   P   |   +(-,x)   ||   =   |j P   |   t(-,x)   |[ =   || P   |   x  ||  .     Only arcs 
v 

which are inputs or outputs of x have a different value in 

M' than in M:  each input arc is decreased by 1, each out- 

put arc increased by 1.  It follows that, if k = || P | x || , 

then the || P | M' | = | P | M || - k + k. 

♦ Suppose P ends at x.  Then, by what was just shown 

| P j +(-,x) || = || P | t(-,x) || + 1 = || P I X || = k . 

Therefore || P | M' || = || P | M || - k + (k-l) = || P j M || - 1 . 

Similarly if P begins at x .    Q.E.D. 

Immediate consequences; 

D2.  Assume M^M' ; if P is a track then || P | M' || = || P | M || ; 

if P is a forward track with a beginning at x then 

|| P j M' | ■ || P | M |J + 1; if P is a backward track beginning at x 

beginning then || P | M' || = || P | M || - 1 . 

D3.  Assume that M^M' and that, in a, the vertices x and y were 

fired an equal number of times.  Then for all paths P from 

x to y, || 5 | M || = || P | M*. j|  .  I.ms the pair of markings, 

M and M' determine a partition of the vertices of the graph 
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into equivalence classes via the relation:  x and y are 

fired an equal number of tiroes in o .  We will call this 

the vortex partition of (M,M') . 

D4.  Given MtcOM' and that, for vertices x and y, |l o | ^ |j - II 0 J y |! ■ »• 

Then, for all paths P from x to y, |i P | M' || = || P | M || + n . 

In particular, if, for all arcs a || o | f(a,-)|| and 

|| o H (a,-) || are known then M'(a) - M(a) is known. Now 

letting C be a variable which ranges over all vertices of the 

graph we may think of o as defining a function || a | £ | , 

mapping each vertex x to the integer which specifies the 

number of times x was fired in a .  We have shown that thQ 

function || a   \   t,   1 exactly specifies M' , if M was given. 

Thus, if Mtöj)!^ and M[o2>M2 and || a | c II = !l Ö2I ^ I then 

M1 = M2 . 

Example; 

Marking M 

M  ta> M 

ff may be any of the 

following sequences 

c, e, b, d, a 

c, e, d, a, b 

c, e, d, b, a 

c, d, a, e, b 

c, d, e, b, a 

c, d, e, a, b 

,_. 
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The following isr- a natural generalization of Dl. 

Let P be the undirected path x ,a ,x ,a ,x a .„x 
u    u    i.     J.    ^    ^        n 

n-l 
Define     || p|M ||   =     ^ 6 .M(a. ) 

i=0 1  1 

where 6.  =1 if +(a.,x.) 
i        »it 

and   6.  = -1 if +(a.,x.) 

Example 

n 6 . - 
i 

1 
—^— • -e2 

-i 1 1 -1 

xo xi 
X2 X3 X4 X5 

Theorem D5 

Let M[x>M,  and let P be a path.  Then  || PIM || = || PIM' 

if x is not an endpoint of P . If P begins at x 

then  || PJM' || = || P|M || + 1 ; if P ends at x then 

|| P|M' || = ||P|M|| - 1 . 

Proof 

Suppose x is not an end point of P .  If it is not 
J 

a vertex of P at all then neither do any of its input 
- 

or output arcs lie on P , and the firing of x cannot 

change the token length of P . Now suppose x occurs 

one or more times on the path P . We can assign 

to each occurrence of x in P two arcs of P : 

If x = x.  0<i<n then assign the arc pair  <a.»a. -> 

Üif x = x = x  then assign the arc pair  ^a ,a \ . 
no x 0 n^ 

,- For the input and output arcs a of x , define 

^ ; j(a) = + 1 if a is ah input of x and • j (a) = - 1 "' 

j if a is an output of x ,, Then, if <(a.,a*>    is an 

arc pair of x on the path P 
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j (a) m  6(a)  and j (a1) ~ -6(a) .  Thus these two arcs 

contribute c= j(a)M(a) - j(a,)M(a,)  to  |P|M|| . 

By firing the vertex, the number of tokens on an input 

or output arc a of x is changed by -j(a) .  There- 

fore the arc pair (a^1) , after firing, contributes 

c' = j(a)[M(a)-j(a)] - j (a') [Mta')-j (a') ]  to  |P|ir| 

but c' - j(a)M(a) - j(a)2 - j(a,)M(a,) + jU')2 

c' = c + j(a•)2 - j(a)2 = c . 

If P ends at x then, in addition to a set of arc 

pairs which P might contain because of other occurrences 

of x on P , the firing of x also affects an  (but 

not BQ ).  The contribution of an to  JP|M|! is 

c = j(an)M(an) ; after firing the contribution is 

c' = J(an)[M(an) - j(an)] = c - 1 .  Hence 

IIPIM'J = |P|M| - 1 ; similarly, if P begins with 

x . 

Restrictions 

Let G be a graph with marking M .  Let G1  be 

any subgraph of G . 

Definition 

MIG
1
 4 The restriction of the function M to G1 

MIG' A The restriction of the weak reach of M to G1 

This is the class of markings H±    such that 
■i- 

there exists M2 such that M2 e M and 

M, - MolG' . 

MJG1 A The weak reach of MIG
1
 . 

In general MIG
1
 /  MIG1 . 
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Example: 

<G/M>   : ^G',  MlO   : () a 
C) 

<G'/M;L>   :    Q 

7 
y 

f 
y 

Vertex x is no •. Irable in G1  but not in G . 

Thus the marking M-^ is in MlG'  but not in M|G' . 

Theorem D6 

In a marked graph G with marking M where G'c G , 
^. 
MlG' &  MJG1 . 

Proof: 
=5> 

We will show that (M-,^ e MJ^^MJG' e MlG') . 
«4» 

Let Mi e M .  If M^ « M then M jG' = MlG' e MjG1 . 

Now assume Mn ^ M ,  In that case, M[-)M^ . We 

will now prive that for any vertex x , 

(M^M-J—C^M-JG' e MlG1) 

Suppose x e G' .  If x is firable in M then all 

its input arcs must contain tokens.  Thus all its 

input arcs in G'  must contain tokens.  Thus x is 

firable in MlG'  and MlG1[x> exists.  Clearly 

M[x>|G' = MJG'[X>  .  Thus M-JG' e M|G* .  Now 

assume x ^ G"  then the token content of every arc in 

G1  is unchanged by the firing of x . Thus MiJG' = MlG' 

and Mj^ e MJG1 . ' 
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Now assume o is any sequence such that M[a> 

exists.  Let a - s1/s2,s3...s  and 

Mls1>M1[s2>M2... [sn>Mn .  Assume H^l«1 e MIG' .  Then 

MJIS. n>M-,i  and by the above argument M-.-, c M. [G1 . 

However since MJG' e MIG"  then Mi|G
,e:M|G,  thus 

Mj+1 E' MIGI *  By induction ^{C   e MIG' . 

Q.E.D. 

E.  Liveness 

Definition; 

El.     A vertex    x    in f-vx = <g,M>    is  live if  there 

exists  a firing sequence    a    which contains    x   .     More 

exactly:    3cflMta>    exists  and     ||c|x|i  > 1  . 

E2.     A marked graph  is  live  if all of its vertices are 

live. 

In this section we will discuss  criteria by which one  can 

determine whether  a vertex or a graph is live.    We will  alßo 

discuss  the connection between liveness as a "static"   fact 

about a given marked graph   t^Ä    ,   and the behavior of    ^^^v 

,_ 
when it is transformed by firing sequences. 

i Lemma E3. 

Let g be a directed graph in which every vertex has, 

\  _ at most,,a finite number of input arcs. Assume that g 

contains a vertex xQ    which can be reached from an 
u 

infinite number of vertices y in g — i.e. 
^j—-—■—————. 

(Vy) (3P) ( |x0...y) .  Then there exists an infinite 

• 1 

4 
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-t  
path P'IXQ...  . 

Preliminary Dofinitiou. 

For a vortex x , define the backward reach of x 
4. «s  

denoted x as  {y: ( P) ( P|;x. ..y)} . 

Proof 

We shall inductively construct an infinite sequence of 

vertices and arcs x0/a ,x ,a ,x ja ...  | 

.1   (Va.:  xi   a.    xi+1 

.2  x.  is infinite x 

Note first that, by the hypothesis of the theorem x. is 

infinite. Now examine the set of all vertices  z.  from which 

x  can be reached by a path with a single arc.  There must 

be such vertices, or the backward reach of x  cannot be 

■ 

infinite. At least one of these vertices, say z , has 

infinite backward reach.  This is because x„ ■ {z.}.uUz. 
0    i i £ i 

and the union of a finite number of finite sets is at most 

finite , contradicting the assumption that the backward 

._     ••.*•■.   „.,        • -«•- reach of x^    is infinite.  Pick an arc x0    a,    z^ 

and let x, be z  .  Now given that x ,a ,x,,a ...x  has 

been constructed we can construct a  and x +1 by the 

same argument. 
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Theorem E4 

A vertex    x    in   t*\ft   =   ^g/M^    is  live if and only if for all 
«3.—■  

infinite paths P|x.... ,  |PIM|| > 1 . 
Proof: ^  

Suppose there exists a P||x.... {  JP|M| = 0 .  By 

Dl we know that for arbitrary firing seq ences MLcOM* 

(PIM'H == 0 .  In particular no firing sequence results 

in a marking which places one or more tokens on the first 

arc of P .  But that arc is an input of x .  There- 

fore M does not lead to a marking in which x is 

firable. 

Suppose that, for all infinite paths P|!x.... , 

|P|M|| 21 1 •  Let B  be the subgraph of g obtained by 

taking the union of all backward directed paths P from 

x I  |P|M|| = 0 .  If there are more, let Bx consist 

of the vertex x alone.  B  contains at most a finite 

number of vertices.  If it contained an infinite number 

then, by lemma E3,  B  would contain an infinite path 
^i  

P'lx   with HP'IMII = 0 , contradicting the 

hypothesis. 

Next observe that B  must contain at least one 

firable vertex.  First, if Bx consists of the vertex 

x alone, then by construction,  x must be,firable.. . 

Second, note that B  must be circuit free, for other- 

wise an infinite path P'px ....  can be constructed 
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in B  .  Since Bv is finite and circuit free it 

must contain finite paths of maximal length p|x ... y . 

But by construction,  y must be firable, the blank 

path P can be extended by adding an empty input arc 

of y . 

[ 
|1 
I 

U 

I 

LI 

ü;.. 
ü 
fl 

Let y be a firable vertex of B  ,  y j^ x . Assume 

M[y)M'  and define B'  relative to M1  just as Bx 

was defined relative to M .  We shall show that B' 

is properly contained in B . 

(1) y e Bv and y i B1  because by theorem Dl the x x 

token length of every path from y to x must have 

increased by 1 . 

(2) If z  c B*     and z i Bx then the token length of 

some path from z to x must have decreased to 0 as 

a result of firing vertex y .  By Dl this shows that 

z = y . - .      •. 

Thus we have shown that, starting with M , one can . 

construct a finite firing sequence which terminates 

with the firing of vertex x .        Q.E.D. 

Example: 

The vertices v,x,Y,  and z are dead and contained 

in the blank babkwards track '||w,y ,z,x,y ^x... 

All other vertices are live. 
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Theorem E5 

A vertex firing in a marked graph may only affect the 

liveness of the fired vertex. 

Proof: 

Let M[x>M' .  By El, a vertex is v dead if and only 

if there exists a backwards blank track T which contains 

v .  Assume  |T|M| > 0 and  JTIM'! = 0 .  By Dl only 

paths which end at the vertex x may decrease in 

token length as a result of the firing.  Thus v = x . 

Definition: 

1.  Let x be a vertex in o-rcv « (g/M) .  If cvw\  contains 

any dead vertices d and any paths P of the form 

P|jx...d  then define 

DM(x) =.min|:p|x...d|M|| ......    ... 
n 6^ .        ......... ....... 

If there are no such paths then Dw{x)  is undefined. 
M 
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2.  A firing soquenco *a kills the Vgrtex x if 

||a|x|| >^ 1 and x is dead in M[o) . 

Theorem F.6 

Let x  be a vertex in 'W-PV = ^g/M)> ,  Then: 

(1) If there exists a sequence a which kills x- and 

l!o|x || - N then D (xn) = N . 
U M  u 

(2) If D (x^) = N  then for all a which kill x. , 
M 0 0 

lklx0l| = N . 

(3) If D (xQ) = N there exists a firing sequence which 

kills x0 . 

Proof by induction on N . 

N=l 

I. 

L 

(1)  Suppose there exists a sequence M[a>M' which kills 

x0    and |o|xn|j =  1   .     Since is dead in ^a' = ^g»M^ / 

by E4 there must exist a backward track 

T||x ,x1,X2»x3.. . j llTJM'll = 0 .  Let x.  be the 

lasf  vertex of T such that  ||ö|X.|| ^ 1 . Then 

clearly Xi+i    roust be dead in <*m and by Theorem Dl 

we must have   jlxQfX,.. .xi+1|M|| = 1 .  On the other 

hand, no dead vertex in ""»tn could have yielded a 

shorter token path to XQ for otherwise, by E5, 

xA would be dead relative to M .  Hence D (x) = 1 . 
0 M 

(2)  D (XQ) = 1 .  By .E5 we Jinow-that XQ .is.live.  Therefore . 

there exists a firing sequence which fires XQ .  By 

Dl such a firing sequence can fire XQ at most once. 
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after which x  is dead, i 

(3)  By Dl, no sequence which kills x.  can contain more 

than 1 firing of x- .  By E4; none can contain less. 

Assume the theorem for N ^ 1 

(1)  Assume there exists o killing x0  such that 

IOIXQH = N + 1 .  Let a = s1,s2/s3.. .s, .  Let s. 

be the first occurrence of XQ .  Let o^ = s^,s2;s3...s. 

o- = s. Ll »s^... .sk and M[ö->M. . Now by 

assumption |CT |XQ|[ ■ N .  Thus D # (x«) = N .  We 

will show that there exists a dead vertex d'  relative 

to Mi such that loJd'H - 0 and 1 Plx.-.d'  |p|M1| - II 

Let d be any dead vertex relative to M,  such 

that there exists P||x...d such that llPlM,]! = N . 

Now by E4 there exists a backwards blank track 

T containing d .  If the track contains a blank 

circuit/ every vertex on the circuit was dead 

relative to M .  Choose any vertex on the circuit as 

d' .  If the track does not contain a circuit, it 

contains an infinite number of vertices, not all of 

which could have been included in o, .  Then choose 

d'  such that d' ^ a. . 

In either case ITJM || -, 0 .  Since T. includes. ... ., ;. 

d'  and d there exists a path P^||x...d,  such that 
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lP1|M1| - N   .     Since     HoJxJ, - 1  and     (ojd'll -  0 

IP^IMH ■ N + 1  .    Thus    DM(>:0)  ^ N + 1  .    However 

if     DM(x
n)   <  N +  1     then by  assumption     |ja|xQ|{  < N  +  1 

thus,     DM(x0)   - N + 1   . 

(2) Assume    D„{xJ   - N + 1   .     By Dl,   for all a   ,     if    a    kills 
MO 

x  then  ljü|x0|| £ N + 1 .  II" there exists a sequence o 

such that  (O|XQ|«K<N+1 by inductive assumption 

(2)  DM(x0) = K contradictiny assumption.  Thus for all 

a killing x0 |[a|xQ|, = N + 1 . 

(3) Since we know that x0  is live and since it surely 

cannot be fired more than D^XQ)  times, a sequence 

which kills xft surely must exist. 
Ü.E.D. 

Corollary E6a 

If    M[x>Ml     then    Dj^'(x)   = DlM{x)   - 1 

Example; 

a/<3 0—A •<■-' 

D 
Ü 

L 

DM(a) = 4 
DM(b) is undefined 
D (c) is undefined 
DjJ(d) - 0 
DM(o) is undefined 
DCCf) - 2 
DM(9) " 2 

The reader is encouraged to verify 
this data by placing M{a)  paper 
tokens on each arc ex and trans- 
forming the marking by the firing 
rule.  Note that the graph may be 
made live by adding a token to the 
blank self loop on d or by re- 
moving the self loop. 



92. 

Coinposition of Marked Graphs 
**'  '  ' ' *  *^ .. ■  

Define rf<vt 1 ® ""^ ~  ^y''11'^    where 

g' = 9! <3 g2 - ^VJUVJ ,A^ A2 , \^ 12' + iu + 2) and 

M' — For all arcs a: 

(1) If aeA;!^  and a^A2  then M'Ca) = M1(a) 

(2) If a^AjL and ar.A2 then M'(a) = M2 (a) 

(3) If aEA1 and aeA2 then M'(a) = M1(a) + M2(a) 

Killing Vertices 

Let <t<wv = ^g;M^ and let X be a set of vertices. 

A — XX-j/X-zX-... Xn ]    C^   (£ 

Define '\^y       =   i»^ (f>N" &J   ©^ . .. @ 

Clearly all xex are dead in tfw  . 
\ x 

We will call the transformation from rfvv to 'rrSkv 

killing the set X of vertices. 

Now let y be a single vertex. 

Define m^y = ^{y) 

Now let f*^ = ^g,M ^> and let ^  = ^g »M > . 

Let x be a vertex in ns 
Define  D (x|y) = DM (x) 

Theorem E6b 

D (x|y) = max (\\o\x\\ -   \\o\y\\) 

Proof: 
Assume DM(x|y) » D (x)  then for all a 

Hxll 1JV*!^ •   since   llaIyll 10 » 
||a|x|| -   |la|y|| < DM(x|y)   . 
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Now assume Dj4l(x|y) = N ^ DM(x)  then there must 
-*»,: 

exist a path    P||x...y    such that     I1P|M|I = N   .     If 

there exists  a sequence    a     such that    M[ö>Ml     and 

llaMi  -   Ik | y II  = S  >  N    then    N - S  <   0    and 

lIPlM'H   =   ||P|M|!   - (||a|x|i   -   l|ö|y||)  ,      ÜPIM-II  =  N   - S   <   0   . 

But the size of any path is non-negative, thus 

||a|x|| - Ho |y!l £ N = DM(xly) .  We will now show there 

exists Ö-  such that M[ö ^ exists and 

lk|x|l - Hyl! = DM(x|y) .  Recall that DM(x|y) = DM (x) 
y 

where    M      is  the marking of the graph   'vwv     with    y 

killed.     By EG,   there exists a  firing sequence    o 

in   '™>Y    such that     llöjxll = DM   (x)   = D   (x|y)   . 

Since    y    is dead,     llcjyll = 0  .     By D7 if    M   E0,) 

exists  then    M[a,>    exists.     Thus  there exists    a-^ 

such that    M[a1>    exists,    D   {x|y)  =   Ha-^lxlj   , 

lojjyl - 0  ,    and hence     1103^1x11 -   Haj^lylj = DM(x|y)   . 

Thus    max     {|o|x| -   |!a|y||)   = DM{x|y)   . 
Ml^M" M 

Corollary 

Let MLx)^ . For all y ^ x , DM,(x|y) = DM(x|y) - 1 . 

Corollary 

Let MU)!*' . For all y ^ x , 

DM, (y|x) = DM(y|x) + 1 if and only if 

DM(ylx)  ^ DM(y) 

4—  
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Proof; 

■+    If    Dw(y|x)   - D   (y)     then 
M M 

D
M. (y)    1 DM(y) ^ D

M
(Y

I
X)

   *    HoWGVGr' 

DMI(yNl DM'
(Y)

   
thus   D

M.^IX) i D
M
(X

I
X)
 • 

■«-    If    D  (y|x)  ^ DM(y)     then    DM(y|x)   < DM(x)     and 

there exists  a path    p||y...x    such  that 

||P|M1| = D   (yjx)   .     Furthermore since 

DM, (y|x)   =   ||P|M'|   =   ||P|M|| + 1 - DM{y|x)   + 1  . 

Q.E.D. 

Theorem E6c 

Let G* ^ G 

MIG* = MlG'  if and only if for all vertices x,y,  E G1 , 

DM(y) = DM|G'(y)   and DM(xly) = DMIG-^IV) • 

Proof; 

-»■  Assume DM(y) ^ DM|G.(y)  or DM(x|y) ^ DH|G,<x|y^ • 

Clearly DM(y) 1 DMIG'
(y)  and DM^^5

 1 ^JG'(xly) ' 

thus DM(y) < DM|G.(y) or DM(x|y) < DM|G.(x|y) . 

In either case by E6 and E6b there exists a sequence 

a such that MJC'[a> exists but M[a> does not 

exist.  Thus there does not exist M1  such that 

ML-^M'  and M'JG1 -MlG'Co) .  Hence MlG' f M-lG1   . 

-*■      Assume   V'x^y,   e G*       •' ■    •  ••' •■••••••• "   •'    -'■ ■        ■■■■■.■■■ ••.• 

CD     DM(y)  = DM|G.(y)     and    DM(x|y)   = DM|G'^xlyJ   •     By D6r 
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MlG* S MJG1 .  We will show that under assumption (1) 

Mj e MlG1  implies M, e MlG' , that is, there exists 

M 2 such that M[->M2 and M^G' = MJL . Assume 

M-,^ = MlG1  then Mj e M|G'  and M1  e MlG' .  Now 

assume M^ ^ MlG' .  Then MJG'[->M1 . We will now 

prove that for any single vertex firing x such that 

MlG*[x>M, , there exists M^ such that M[->M2 and 

M2IG1 = M, , and condition (1) is preserved by the 

firing. 

Let x e G'  and MJG'[x>M .  Now assume there does not 

exist a firing sequence a such that M[a> exists, 

||a|x|| = 1 , and for all y e G1 y 7* x ,  |a|y|| = 0 . 

Then DM(x|y) = 0 .  However D
M|G»^xly) 1 ^ since x 

is firable.  Thus DMjGi(x|y) ?  DM(x|y) , contradicting 

assumption (1).  Hence the sequence a    must exist. 

Clearly Mfo)^' - MJL . Now let M[a>M2 . 

For all a,b e G' 

If b then by E6 DM (b) = DM(b) - 1 and M M 
DM (b) = ^IjG1(b) " * •  If b ^ x then by E6 

11. (b) - DM(b)  and DM (b) = D,^,.,^) .  In either 'M M M G' 
case D„ (b) = Dw (b) = D 'MJG.^ • M2V '   ^1      "2 

ll  If a = x = b or a ^ x j^ b then 

DM (a|b) = DM(a|b)  and DM Ca |b) = .DM|G, (a |b) 

If a = x and b ^ x then by E6 D  (ajb) = pM(a|b) - 1 

and DM (a|b) = DM|Gi - 1 .  In either case 

SSSS ——» 
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D  (a|b) = DM jGl (a|b) .  If a 7-' x and b - x then 

by E6b if D.. (a|b) /  D  (a|b)  then since 

DM (a|b) < DM (a|b) ,  DM (a|b) = D^(a|b)  and 

DM (a|b) = DM|G,(a|b) + 1 hence DM (a|b) = ^(b) 

and D, M Gl (a|b) ^ ^/IIG'^
b^  contradicting (1).  Ihus 

DM (alb) = DM IG' (a'b) * 
4b <- 

By I and II condition 1 is satisfied after a single 

vertex firing.  Thus for any sequence a of vertex 

firings MJC' [c^M,  implies there exists M2  such 

that M[->M2 and M^G' = M, . 

Q.E.D. 
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D Theorem E7 

In a marked graph with marking M ,     let L be any 

set of live vertices such that 

(1)  If x e L then for all y , D {x|y) = 0 implies y e L 

There exists a firing sequence o    beginning with any 

firable vertex in L which fires every element of L 

exactly once and fj^es no other vertices.  That is 

x e L <J~o IHxIi = 1 , x ^ L o-o ||a|x|| = 0 . 

Proof: 

I 

o. 
D 
0 

We will first show that L contains a firable vertex. 

Pick any vertex x e L . All vertices in the set B 

must also be, in L since if Y e Bx ' D
M(
xly) = 0 • 

By the argument in E4,  B  contains a firable vertex. 

Now let x be any firable vertex in L .  Let M^M' 

Now kill x by placing a blank self loop on it: \p 

Now let L' = lylyeL and y ^ x) .  By E5 every 

vertex in L'  is live.  Since every output arc of 

x now contains at least one token, the set L' 

satisfies property (1). Thus the above procedure may 

be repeated for L' .  By iteration  every vertex in 

L can be fired exactly once without firing any other 

vertices. Q.E.D. 

ammki 

— 
■ ■.,—.  ■ >-   ■„M-—^.  ,--  ■ 
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Corollary E7a 

There exists a firing sequence beginning with any 

firable vertex which fires every live vertex of a 

marked graph exactly once. 

Corollary E7b 

There exists a firing sequence beginning with any 

firable vertex which fires every vertex of a live 

marked graph exactly once. 

Theorem E8 

A live graph remains  live  through firings. 

L 
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Proof: 

1 
n 

By E5 a vertex firing can only affect the liveness of 

the fired vertex. Assume the graph is live and M[x> M , 

Assume x becomes dead as a result of the firing.  Then 

relative to M D (x) = 1 .  Thus by E4 there must be 
M 

 {>- 
a dead vertex d such that  || ||d...x|M|i = 1 .  However 

the graph is initially live and thus d cannot exist. 

Q.E.D. 

Theorem E9 

In a live graph with marking M 

M[-> M'  —t^ M' [-> M 

Proof; 

D 
D 
I 

We will first show that for any vertex x / 

Mtx> M1  -O M1[-> M 

By E7, if M[x> M. , there exists a firing sequence a 

beginning with x which fires every vertex in the graph 

exactly once.  Since the initial and terminal vertex 

of every arc is fired once in this sequence, M[a/  is 

the same as M . Thus for any firable vertex x , 

M[x> M1[-> M .   .  . ; .;: • ... .....  ....... 

Now let a,  be any firing sequence such that M[a-|> M' . 
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Let i:ho vertices oJ:    o       bo    x.   x  .x  . ,.x„     then 

nix^ Mj^tXj) M2[x3)  ...[xn>  M'   .       By the preceding 

argument    Mn[xn+1> M^     implies    Mn+1 (-> Mn   .     By 

repeated application    M"[-> M  . Q.E.D. 

Theorem E10 

If the graph H with marking M is finite and connected 

and M[->M then the graph is live. 

Proof: 

Let M[CT>M .  Let x e: a and ||a|x|| = N >0 . 

We will show that every vertex is fired N times in 

o , that is Vv e^ ||a|v|| = N . 

Let v be any vertex.  Since the graph is 

connected there exists a path P , not necessarily a 

directed path, from x to v .  Since 

M[a> ■ M ,  |P|M[a>|| = ||P|M|| .  Thus by D5 

|a|x|| =|0|v|| = N .  Since every vertex is fired N 

times every vertex is live and ^j, is live.      Q.E.D, 

Definition: 

If M and T are markings,  M J> T means:  For all 

arcs  a , M(a) > T(a) . 



i 

' 

101. 

Theorem Ell 

Let G be a finite live marked graph v/ith marking 

M .  Let T be a marking of G .  Let C be any 

circuit. 

(vc  |C|M|| ^ IClT^O-OUDM'  iMt-^r  and M' ^ T) . 

Ü 

D 
L" 

Define di(P) 

Proof; 

♦      Since    M'  ^ T    then    VaM1(a)  ^ Tta]   .     Thus 

MC    ICIM'H  >_  ||c|T|j   .     However,   since    M^M'     and    C 

has no endpoints,  by Dl,    VC     IcJM'l »   |C|M||   . 

Thus   VC    )C|M|| >_ ||C|T|| . 

■•'      For any path    P   , 

rdi(P)   =   T(P)   - MiiP\      if     T(P)    >  Mi(P) 

I di{P)   =0     if     T(P)   <_ hi-^iP) 

Let    a be any arc, 

Define    Dj^ =     ][ di (a) 
aeG 

Clearly if    D.   -  0    then    Va    T(a)   < M-(a)     and    M.   >  T  . 
■L i i — 

We will show that there exists  a  sequence of markings 

^L  = M[->M1[->M2...Mn    such  that    Dn =  0   .     We will 

first prove that if    MJ   e ^-     and    D^ = N >  0    there 

exists    M^+i    such that    D.+1  < D.   .     Let  .«    be an 

arc for which    d^CcJ  > 0    that is,    T(a).  > M., Ca)   . 

Let    fCafy).     and    fCarxl   . 

■■' 
TT"

11
 .. a.. 
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Now let V ba the set of all vortices v such that 
—1>. 

there exists a path P |lvx such that d. (P) > 0 . 

—i"*- 
(1) y f' V .  If y cV then there exists P |lyx such that 

d. (P) / 0 .  However  I {a,y) , +(a,x)  and 
Thus * >. 

M. (a) < T(ü) . /there exists a circuit c\\x,a,y,x    such 

d. (C) ^ 0 , that is,  ||C|M|| < HCITH contradicting 

hypothesis. 

(2) If a is an arc such that  (+a) e V «nd  ( + a) /: V 

then Mi(a) > T(a) . If M.^ (a) <  T(a)  then there 
-r>- 

exists a path P||a...x such that d. (P) 7*  0 and thus 

+ a e V contradicting assumption.  Since M. (a) > T(a) > 0 / 
• i — 

Mi(a) > 0 .  Thus if d ^ V and v c V  || ||d...v|M.|| > 0 . 

Now place a blank self-loop on all vertices not contained 

in V .  By E6 all the vertices in V must still be 

live since by (2) above the token length of every path 

entering V from the set of dead vertices not in V 

is at least 1.  By E7 there exists a sequence a 

which fires every vertex in V exactly once.  Let 

M. [a^M.+1 and a be any arc. 

I If  (+a) e V and  (la) e V or if  (ta) ef V and 

(+a)  ^ V    then     ||a|+a|| = .||a|+a||   ,  thus    M. (a)  - M       (a) 

and    d.(a)  ■ d.   , (a)   . 
i i+l 

II If     (ta)   e V    and     Cta)   ^ V    then     ||a|ta|| -   |la|fa|| = 1 

and    M... (a)   = M. Ca)   -  1  .     By . (2)     M. (a)   > T(a)   and . 

M       fa)   - M. (a)  - 1  > T(a)thus   d- (a)   = d.^. (a)   = 0   . 
x+i a. — J- x+1 

III If     (fa)   ^ V    and   (ta)   e V    then     |lo|+a||  -   ||a|iaj  =  1 
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and M.., (a5 = M. Ca) + 1 .  Thus if d. (a) = 0 

then di+1(a) = 0 and if di (a) = N / 0  then 

d^.j.^Ca) = N - 1 .  Since there exists an arc,  a , 

which satisfies requirement III and d.(a) ^0 , 

then di+1(a) < di(u) .  By I, II, and III for all 

arcs a ,  d. .(a) £ d-(a) .  Thus, 
i+l      ■L 

I di+l(a) < I  d (a)   and  D   < Di . 
aeG        aeG 1 x+1        •L 

Since M[-)Ml  for all M!  in the marking frl , 

VMAte  HC^LH > ||C|T|J .  Thus the hypothesis still 

holds and the above procedure may be repeated until 

D.  decreases to zero and M. > T .    Q.E.D. 
i x — 

Theorem Ella 

** 

' 

■ 

~TI 

,0 

The following theorem is B generalization of Theorem 

£11 to graphs which are not live.  It s proof is very 

similar to that of Ell and differs in spots marked 

with asterisks in the margin. 

•- Example 

Let G be a finite marked graph with marking M . 

Let T be a marking of G .  Let C be any backwards 

track.  (VC .||C|M|| > lelT^^-^^M'lMt^M'-. and M' >• T) 
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Proof; 

*   Since M1 ^ T then VaM*(a) > T(a) .  Thus 

VClclM'l > |C|T|  .  However, since Mt-^M' 
no 

**  and C has/beginning endpolnt , by Dl, 

VCIICIM'I  <_ \\C\M\\    .    Thus   VC||C|M|| I |C|T)    . 

+   For any path P , 

(^(P) = T(P) - M. (P)  if  T(P) > M. (P) 
Define di(P) h{ x x 

" (d;L(P) =0 if T(P) < Mid») 

Let a bo any arc, 

Define Di = ^ d^n) 
aeG 

Clearly if  Di = 0  then Va T(a) _< Mi(a)  and M^^ ^ T . 

We will show that there exists a sequence of markings 

IK = M[-> MjJ-)^. . .Mn such that Dn = 0 . We will 

first prove that if M. e ^-  and D. = N > 0 there 

exists M.,,  such that D-ji < D: .  Let a be an 

arc for which d^ (a) > 0 that is,  T(a) > M. (a) . 

Let t(a,y)  and f(a,x) . 

Now let V be the set of all vertices v such that 

there exists a path Pjvx such that dj^P) > 0 . 
 >■ 

tD Y f^ V •  If y e V then there exists  PJjyx such that 

d. (P) ^ 0 and since for the arc a from x to y 

**  Mi(a) < T(a) .  There exists a track (also a circuit) 

C||x,a,y,x such that d^c) ^ 0 , that is,  |C|M| < |C|T| 

contradicting hypothesis. 

(2) If a is an arc such that  (ia) c V and  (Ta) / V 
'  | ._ i  ■   . .ill -    ■   — '   •- — i         ' ■ 

then Mi (a) > T(a) .  If Mi (a) <^ T(a)  then there 
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exists a path P|a...x such that d.(P) ^ 0 and thus 

+ a c V contradicting assumption.  Since M. (a) > T{a) _> 0 , 

Mi (a) > 0 .  Thus if  d ^ V and v c V ji |d. ..vjMiJ > 0 . 

i 

** 

Now place a blank self-loop on all vertices not 

contained in V .  Suppose there exists  d e V such 

that d is dead.  Then by Theorem D4 there exists a 

backward blank track Cd ending at d .  However 

Cd VJ P||v. ..x is also a track and 

)cd V) P||v...x|M|| = |P|M|| < ||P|T|| contradicting the 

hypothesis.  Thus all vertices in V are live. 

By E7 there exists a sequence n    which fires every 

vertex in V exactly once.  Let ^ifo^i+i an^    a 

be any arc. 

I. 

Ü 

[ 

I If  (ia) e V and  (la) e V or if  (+a) ^ V and 

( + a) ^ V then |a|+a|I = ||a|+a|| , thus Mi(a) ^ Mi+1(a) 

and d^ia)  = di+1(a) . 

II If  (+a) e V and  (ia) ^ V then  (ö|+all - M+a|| = 1 

and Mi+1(a) = M^a) - 1 .  By (2)  Mi(a) > 0 and 

Mi+1(a) = Mi (a) - 1 21 0  thus di (a) * Ai+l^)   B, .0 . 

III If  (fa) ^ V and C+a) e V then |a|+a|| - |a|+a| = 1 

and M.+1 (a) - Ih (a) + ] . Thus if d. (a) ■ 0 then 

di+1(a) =0 and if di(a) = N ^ 0 then d.+1(a) = N - 1 . 

[ 
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Since there exists an arc,  a ,  which satisfies 

requirement III and ^(a) $  0 , then d^+1(a) < d^ (a) . 

By I, II, and III for all arcs a ,  di+i(
a) £ d.(a) . 

Thus, 

I  d1+i(a) < I  d^a)  and Di+1 < D! . 
acG        aeG 

**  Nov; we will prove that our hypothesis still holds. 
■ 

■ 

Assume there exists a track C such that 
■ 

|c|Mi+1|| < |1C|T|| .  By assumption  |c|Mi| > |1C|T|| . 

However,  a such tha': Mi[a>M.+-L the property that 

V vertices a ,  ia|a|i = ||v|a|| which is always  0 

or 1 .  Thus since |c|MjJ > |c|Mi+i|| and the endpoint 

e of c is fired at most once in a  , 

MM. || - |c|Mi+1|| + 1 .  However HcJMji > ||C|T|| > ||c|Mi+1|, 

thus  Icll^l! = |C|T|| .  But since  |o|e| = 1 , 
_ ^ 

e e v .  Thus C U P|e...x is a track terminating 

at x and  ||c U p||e...x|Mi|| < |c \J p||e...x|T|| 

contradicting our initial assumption.  Thus the 

hypothesis still holä> and the above procedure may 

be repeated until DJ  decreases to zero and M. > T . 

Q.E.D. 

, / • •• 4" 
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Corollary E12; 

In a live finite strongly connected graph 

I 

0 
0 
[ 

Proof: 
^C  llclMjl = |1C|M2I| <M:>  M^-) M  (where C is any circuit) . 

Follows from Dl. 

■♦  By Ell there exists M  | M1[->M3 and M3 >_ M2 .  Also 

by Dl: 

(1) VC ||C|M1|1 - |C|M3J = ||clM2|| . Since the graph is 

strongly connected, every arc is contained in a circuit. 

If a is an arc, for any path P from  (+a) to  (+a) . 

IHMOI i IIPIMJ! .  Thus if M-Ca) > M2 Ca)  then there 

exists a circuit C composed of a and P such that 

|C|M3|i > |lclM2( , contradicting. (1).  Thus M3(a) < M2 (a) , 

M3(a) iM2(a)  and Va M3(a) = M2 (a) . Therefore 

M3 = M2 • - Q.E.D. 
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Definition 

A cycle is any path P||x...x ; not necessarily directed. 

Theorem El3: 

'. J 

■finite 

Let    «WA     be the live''graph    <(g/M)    .    Let    C    be 

any cycle,     [vc     |1C|M(  =   |c|M2f|     o* i>        (M[->M2) 

♦■      Follov;s  frora Dl. 

•*-..    By Ell  there exists    M-jMt-^M-L    and    IU > M*   •     By Dl. 

CD   vc    ||C|M|| =  IclMjJ = 1|C|M2||    . 

Let    x,y e g  .    Let    P    and    P"     be any two paths from 

x    to    y  .     Since    P(-£) P1     is a cycle, 

M-^P)   - M^P')   - M2(P)   - M^CP") 

Mj^CP)   - M2(P)   =    M^P')   - MjCp') 

Thus    VP,    M,(P)   - M2(P)     is a constant.    Now add an 

arc    a    to the graph frora    y    to    x  .    Let    M^(a)   >  0 

and    M2(a)   >  0    and    M2 (a)   - M-^a)  = M-^P)   - M2 (P) 

then    Vp    M2(a)   + M2(P)   - Mj^ (a)   + M-j^CP). 

Thus all new cycles    C    satisfy the relation 

M, (C)   = l^fc)   •    Place such an arc between every pair 

of vertices which are connected by a path.     The graph 

now consists of strongly connected components. 

By E12    M1l->M2    and by D6     M-Jgt-^^lg   . 
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F., Safety 

We now introduce an important property of narked 

graphs which relates to the possible token content of 

arcs. 

Definition Fl 

Define U (a) imaxJolM'l 
M    M'eM 

LM(a)   £ minJ!a|M'j 
M          M'eJf 

Example: 

<g.M> 

a 

U„(a)   =2                    b   W 

U   (c)   is undefined 
M 

LM(b)   =0 

LM(d)   = 1 

Theorom F2 

^ 

T-^'^ 
e 

UM(a) - M(a) + DM(^a|+a) 

LM(a) = MC«) - DM(+a|+a) 

Proof: 

DM(+a|ta) = N if and only if  max C|o|t|] - I*» 111 ) ■ H 

Clearly UM(u) = M'(a) = M(a) + N .  By similar 

argument LM(a) =M(a) - DMCta! ia) •. '•• 

±=:-=s 
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Theorem F3 

UM(u)   = min 
T 

IT|O...|M( 

Proof;      By  F2     ÜM(0)   -  M(u)   +  DM(|a||a) 

Assume    D   (+aj+al   = D
M(la)   • 

Then    min|T]|+o-..|M| = DM(+a)  = DM(to|+a) 

Clearly    minima... |Mj| - DMUa|+0)   + M(a)  = U^)   . 

Now assume     DM(^a|ia)   7^ DM(foJ   •     ,rlien 

I o ._ 
min|P|jfa. .. fa|Mj| ■ Di^fal+a^ •  The circuit composed 

of P and the arc ex is a track thus 

minllTfia... |M|| = DM(+a|+a) + M(o) = UM(a) . 
T        .      *. 

Q.E.D. 

Definition: 

The arc a  is safe ^ Uw (ct) < 1 .  A graph is safe  M   —   
■ 

if all its arcs are safe. 

Definition; 

A basic circuit is a circuit C such that ||C|M|| = 1 

Theorem F4 

If -vvv  is live and a E 'O^- 

a  is safe if and only if it is contained in a basic 

circuit. 

Proof: 

• •• I 
By F3    a     mur.t be contained in a track with one token 
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or less.  If this track is not a circuit then it 

contains a dead vertex contradicting assumption. 

If it is a circuit C then since the graph is live 

||C|M|| f  0 .  Thus  ||C|M|| = 1 . . 

[C|M|| = 1 and a e C then by F3 Ü (a) < 1 . T C 

Since fa  is live UM(a) = 1  and the arc is safe. 

Q.E.D. 

Theorem P5 

Given a live graph twv. = ^g,M) and an unsafe arc 

a contained in a circuit.  There exists M1  such that 

^J/M'^  is live,  a is safe in M'  and every arc 

which is safe in M is safe in M' . 

Proof;  (Genrich) 

Since a is contained in a circuit,  U (a)  is 
M 

defined.     Let    M[->M-     and    M, (a)   ■ U
M(CX)   .     Since 

the graph  is  live and for all  circuits    c     ||C1MII ~   ll^lMlP   ' 

and    M.Ca)   =  UM(a) UM^a^   ~  1     iinPlies     UM   (a)   =  1   . 

Define    M'   :     For all  arcs    a ^ a   /     M* (a)   = M(a)     and 

M'(a)   =  1 

Sinrv» M.Ca) = UM(a) ,     uMi (a^ ~  ^ and ex is safe. 

For all circuits  liCjMjlJ > pCjM'!! > 0  thus all arcs 

safe in M,  are safe in M'  and M'  is live. 

Corollary F6 

Any finite graph g composed of strongly connected 
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components may be given a live safe marking M 

Proof: 

For all arcs, let M (a) > 0 .  Clearly <g,M0> 

is live.  Since every arc is contained in a circuit, 

the above procedure may be performed for each arc 

resulting in a live safe marking. 

Q.E."). 

Distances 

Define D(x|y) — max      D ,(x|y) 
MI-^M"     M 

Theorem F7 

Let x and y be two vertices 

in a live graph T*^ .  Let Cxy be any circuit 

containing x and y .  Then  D(x|y) = min ||Cxy|M| 
C 

Proof: 

First we will show that DCxjy) <; min |Cx]f|M| 
^ C 

Assume MI-^M1 .  Since 

g is live DM, (x|y) = min ]P|x..,yjM| .  Clearly 

min Pjjx. ..ylMB < min iCxy|MJ .  Thus 
P _    C 
max    D.., Cxly)   < min   ljCxy|M|| and    D(xly)   < minl|Cxy|Ml| 

M^M'   "       '       -    C     "       '   H . '       -    C 
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Now wo will prove that there exists    M1     such that 

MI-)!-!'     and    DM, (x|y)  « min   |Cxy|M|| 

Let     DM(x|y)   a  N     and     DM(y|x)   =  K 

Now  lot    M[o>M1    and     |o|y-x|| = K .     Then • D     (y|x)   « 0 
Mai      , 

and    DM   (x y)   = N + K .     Furthermore    min    P[y...x M|  =  0 
M 

p'||x. . .y|M|) = N + K    and thus and    min 
P 

min   ||Cxy|M|| ■ N + K - D     (x|yl   . 
C Wl 

Q.E.D. 

Corollary FC 

If <3,M> is live, 

following properties: 

1. Vx,     D(x|x)   =  0 

2. Vx,y D(x|y)   - D(y|x) 

3. Vx,y,z DCxIz)  ^DCxIyl  + DCy|z) 

DCxIy)     has  the 

Proof: 

Cl)     follows  from definition 

(2)     By F7    D(x|y)   - min|!cv   IM 

i; 

D(y|x)   = minüclMll    thus 
c     xy 

D(x|y)   = D(y|x) 

(3)     By P7, 

D(x|z)   = minfc^JMl1 .    .   . , 
c     xz 

D(x|y)   = minjc     |M; 
C     xy 

D(y|z)   - minpC     |M|i 
C      ' 

  
■ 
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Every circuit pair    Cyv    and    Cw_    defines  a circuit 

Cx        consisting of    Cxy (B Cy2    such, that 

CxyzM *   IICjcyl-Ml  +   |lCyz|M|   . • 

Thus    min|lCxz|M|| < min||C    |M|| + min||cyz|M|| 
c c       -^ c 

Thus    DCx|z)  £ D(x|y)   +  D(y|z)   . 

Q.E.D. 

Theorem F.10 

In  a  live strongly  connected graph     '^f\   =   <g/M) 

\r--r 

Let V be a set of vertices such that Vx,y,e V 

D(x|yl m  1 .  Then there exists a basic circuit 

containing a1! vertices in V . 

. . 
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Proof: 

Let 0  be any sequence which fires every vertex in 

the graph exactly once.  Let a = Bw&^f s.f.. .s 

Let M[a>M, .  Now if s^s'. e V and i < j , D^.CsJs.) = 

and thus there is a blank path from SJ.     to s. .  If 

i > j , D ,(s.|s.) = 1 and there is a path with one 

token from Sj  to s. .  Now let v-|'v2'v-3 ' * • vn 

be the vertices of V in the order in which they 

appear in c  .  By the above argument for all i 

there is a blank path from v.  to v.,,  and a path 

with one token from vn to v-^ .  Thus there exists 
-r>- 

a basic circuit C = (v^/V^v-j •••v v^ containing 

V . 
Q.E.D. 

Theorem Fll 

Let    C    be a circuit  in a live and safe graph.    '>^<,y 

0   <,  ||C|M|j  <   ||C|A|| 

Proof: 

I 

I. 

[ 

Since    'w^    is  live     |C|Mj>  0   .     Now assume     ||C|M||  >   |jC|A| 

■ 
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-&~ 
Let C = \\s.-jLr3.2fa3   •••anal '  si-nCG the graph is 

live and .safe, each arc is covered by a basic circuit. 

Thus for any arc a^ G C there exists a path 

Pil|la...fa such that  ||P. |M|| = 0 if M(a.i = 1 

and  ||P|M|| = 1 if M(aJ = 0 .  Now let C be the 

circuit consi^Ling of P fP , ,P ~.,.P-,   .  By the 3 n    n-1'   n-2 1 J 

abcve argument     IIC'IMI +   ||C|M||  =   ||C|A||    and 

Hc'lMJl =   ||C|A|| -   ||C|M||   .     However by assumption 

||C|A|| -   ||C|M||  <_ 0    contradicting the hypothesis  that 

the graph is  live.     Thus    VC |IC|A||  >   |iC|M||  >  0   . 

Q.E.D. 

Live and Safe Marked Graphs 

Definition: 

A ls-gr?ph is a live and safe marked graph. 

Example 1;  Billiard Balls 

Consider the lü-graph ga 0 g  where ga is the 
—_ ^ 

single circuit C Uai ,v, ,a ,v9.. .a v    and g. 

is the single circuit ^[^»Vj^-j^,bn_;L/vn_2.. .b2/V1/b1,vn 
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i 

a. 

Such a graph may be interpreted as a representation 

of n billiard balls in ideal collisions on a 

functionless circular track.  Each circuit 

C. = lia./b,  represents a billiard ball  (JQ 

with two possible velocities,  clockwise and 

counter-clockwise.  A token on a-  means QQ 

is moving clockwise;  a token on b.  means \_\ 

is moving counterclockwise.  Vertex firings represent 

collisions between balls. 

Kl n'fli 
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N = 4 

Different marking classes of the graph represent 

different modes of bouncing by which the balls may 

interact.  Now consider any circuit C^ =   ||a^b^ . 

By Fll  0 < IcjMll < llcjAlj   UcjAll = 2  thus Icjü] 

(This makes sense if C^ is to represent (Q^    which 

can only move in one direction at a time.) 

Since the C.  circuits cover the graph the total 

number of tokens in any marking will be n .  By El2f 

to completely specify the marking class of a given 

marking, we need only indicate how the n tokens are 

distributed on the outer and inner simple circuits 

Ca and Cb .  Clearly  |jca + Cb|M|| = n .  0 < Ca < n 

thus the number of inequivalent marking classes is 

n - 1 .  If K^l.     is the marking class which puts  i 

tokens on C  , the number of markings M c ^V: a J        i 

is the number of different ways of distributing the 

i tokens on Ca .  Since  1!C_|A|| = n this number is 

(0- 
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Kxamp.lo; |TL, : (-. ) " 4 markings 

ATV1 represents the bouncing mode in which three 

balls are moving clockwise and one ball is moving 

countcr-clockv;ise. 

M, 

^ 

'vi> 

M. 

"2 
V 

I 

L 

iv3> 
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Au.   represents the bouncing mode in which two balls 

are moving clockwise and two balls arc moving counter- 

clockwise.  Note that the total number of possible 

ways of placing one token on each two-arc circuit 

C-  is  2n .  The number of these distributions which 

are live and safe is 

i=n-l 
I      (")=2  -2  leaving two distributions 

i=l W 

C = 0 ,  Cb = n ; and c
a " 

n # Ch = 0 »  which 

are safe but not live.  These two distributions 

represent the bouncing modes where all balls are 

moving clockwise or all balls are moving counter- 

clockwise, hence no collisions occur and hence no 

vertex is live. 

Example 2 

0 

Consider a graph with N vertices with an arc from 

every vertex to every vertex,,  This graph is 

called       the complete graph on N vertices. 

Any safe marking of this graph will cover every arc with 

a basic circuit.  Thus for any live and safe marking, 

for all vertices x and y , D(x|y) = 1 .  By F10 

there must exist a basic circuit containing all the 

vertices of the graph.  Now let M be a live and 

i'liBililllWli^1'"1«'»1'.1'1''**'!'1'1'1*111"1 
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: 

safe marking of the graph.  Since Vx/YD(^iY) "■ 1 * 

no tv/o vertices may be firable concurrently.  Thu.s 

there exists exactly one x such that Mtx> exists. 

Now let M^  and M2 be live and safe markings of 

the graph in which x is firable.  If M-^-^Mp 

then H-.  and M2  contain the same basic circuit 

containing all vertices.  In M^  and M2  there 

is a directed blank path for all arcs a either 

from +a to +0 or from la to  fa .  Thus there 

exists a cycle C in M,  and M~  such that 

Mj^CC) = M1(a)  and M2 (C) = M2 (a) .  Since 

UxiC)   - M2(C)   M1(a
,) = M2(o'.)  thus 1^ = M2 . 

Hence there is exactly one markinc, per M which 

makes any given vortex firable.  li'ii.s the number of 

markings in any M is N .  Each M is a full 

cyclic ordering of the N vertices where the 

ordering is expressed in the order of the vertices 

as they appear on the basic circuit, that is, the 

order in which they fire.  Furthermore, any full 

cyclic ordering is expressed in some M .  Thus the 
->■ 

number of marking classes M is the number of 

inequivalent cyclic full orderings of N elements 

which is ^i = (N-J) 1 
N 
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N =   3        (N-l) ! 

ttl 

=   2 

123. 

i Kl 

M 
Jf c 

M, M, M- 

Full cyclic ordering; 

a a a 

M' 
2 

V^  / \ V-' 

^ /TV 
b's^' ^'c 

M3 

Full  cyclir: ordering: 

vtBi^mmmanmmm* 
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G,  Boundary and Coboundary 

In this seci.icn, we introduce notation which allows us 

to generate theorem Dl. 

This theorem states that the number of tokens on a path 

increases by only 1 v/hen the initial vertex of the path 

fires and decreases by 1 only when the terminal vertex 

fires. 

A generalization of this fact to structures more complicated 

then paths enables us to determine what vertex firings affect 

the token content of such structures. 
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Definition 

The boundary of the arc a  is  i(a) - +(a) . 

We write 6(a) = + (a) - t(a) 

If A and B are linear expressions in arcs. 

6(A+B) A 6(A) + 5(B) 

Examples; 

The boundary of a path P|x...y expressed as the sum 

of its arcs is x - y .  The boundary of a cycle is 

0 . 

I 
X 

I 

Definition: 

The coboundary of the vertex v is 

la 
+ ( avv) + (b,v) 

If U and V are linear expressions in vertices 

3(U+V) A 3(U) + 9(V) 

n 
Ü 

D 

av=c + d-a-b 
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Theorem Gl 

Let  M[0>M' .     M" « M + 3cr . 

Proof: 

If a  is a single vertex firing,  x ,  M[x> differs 

from M only in that Mix)  places one more token 

on the outputs of  x  anf3 one less on the inputs, 

1 
that is,  M[x> = M + 3x .  Then if M Z X;^ ^2 »x-j. . .) M  , 

M1 « M + 'dXi -i- 3x9...dx =-• M + 3a . J.    ^    n 

Theorem G2 

Let E be an expression in arcs and a  be a firing 

sequence such that M^M' 

NHI = |o|6E| 

Proof; 

: : 

|E|aa|| = IEIM^MII 

If     E  - 

|E|3öl = aJIxj^lSal + a2|x2| 3ai.. .an|xn|8a|| 

anXi   +  a^x—•••a  x 
1  i ^2 n n 

However a||x|3a|| = a(|!a|tx||  -   i|a|ix||)   « a|a|6x|| 

; : 

Since E « Eaixi ||E|3a|| = Ea-lalaxill 
i i 

8<»l?Vii = M«! 

. 
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Maximal and Minimal Firing Sequencer. 

n 

■ i 

.. 

Theorem E6b states that minlip|!y,. .X|H|| = max fa|x-yj| 
P M[o> 

This theorem allows us to determine the maximum size, 

relative to a given measure  !!cf|x-yj| , of a firing sequence 

beginning at M .  Suppose we wish to find the size of a 

maximum sequence relative to some more complicated measure, 

for example max ||a |2x-3y+z||. Such an expression may 
M[0> 

represent a meaningful quantity: 

This marked graph 

represents the 

operating constraints 

on a business.  Vertex 

firings are finan- 

cial events.  An arc 

o from vertex p 

to vertex q means 

that the event q requires some c ommodity which is 

produced by the event p .  Tokens on a represent the 

present supply of that commodity. 

Ü 

D 
0 

Assums x represents an event which costs the business 

$2. Event z costs $1 and event y brings a profit of $3. 

If a firing sequence a represents a sequehcö of events-  J' 

in the business $fla| 2x-3y+z|[ is the net amount of cash 
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spent by the business in this sequence.  Thus 

$roax |ol2x-3y+z|i  is the miniinum initial capital v:hich 
Mla> 
insures that the business, under the operating constraints 

expressed by twy , does not go into the red.  In the 

example, the firing sequence a - {z,a,x/x,b,a/x)  yields 

a $7 debt which is believed maximal. 

In this section we will show how the sizes of such 

maximal firing sequences may be found by inspection of 

the graph at its initial marking M . 

Theorem G3: 

In a strongly connected live graph g 

Let U be a linear expression in vertices such that 

there exists an expression E in arcs with positive 

coefficients such that -öE = U 

max |a|u|l = min  |E|M| 
M[a>      "6E=U 
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Proof; 

First we will show  that 

max  |ö|u||  < min    JE|M| 
M[a> -öE=U 

Let    a    be any sequence such that    MtcOM'   .     By Gl and 

G2 since    -Ü-.6E,   ||E|i-i||-   ||ö|uj|=   ÜEIM'!!     thus 

||a|u|| =   |{E|M  |i -   IJEIM* |! .     Hov^evcr since    E    has positive co- 

efficients   llEJM'H >  0     thus  for all M[o>     and for all 

E    such  that    -6E « U   ,     ||a|ü| _<   |iE|M|l   .     Thus  in 

particular    max   |a|ü||  <_ min   |E|M|   . 
M[a> -6E=U 

Now we will show that there exists    M[a>    and there 

exists    E    such that    -6E = U    and     |iö|u| ■   |1E|M||   . 

For a  forwards  directed path    p   ,  define 

b(p)   A  the beginning point of    p 
r . * 

e(p) 4 the ending point of p 

Clearly 5P = b(p) - e(p) 

Let P be a set of forward directed paths  {pi...pn} 

A)   such that J6(p.) = -U and I||P;L|M1| is minimal. 
i  1 i 

Since g is strongly connected such a set P may be 

constructed by choosing p^ such that  llulbCp,)!! is 

negative and HujeCpj^)!! is positive. Now define 

üo * U ui A ui-l + «Pi m  üi-l + b(Pi) " e(Pi)  and 

choose p^ such that" |u.'|b(pi) || is negative 

and  llu^-^leCp^) || is positive. Since there exists E 
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such that -6E = U , and since E is made up of 

expressions of the form t(a) - ♦(a) ,   the sure     » 

of the   positive coefficients in U is equal to the 

sum of the     negative coefficients in U . Thus 

in the path construction procedure described we will 

not run out of  initial endpoints  befcrre we have 

used all terminal endpoints. Thus the set P exists. 

Example; 

ü = w + x - (y+z) 

P = {p1fP2
J 

pil zw 

P2 lyx 

ü=d+e+f- (a+b+c) 

P = .{p1rP2/P3} 

Pi I ad 

—. B 
p2|bf 

 1 
p3|cftsae 
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Now this set P has the property that -6P = Ü 

("l5(p.)«U) .  We wish to show that there exists 
i 

a     such  that    MLc^M1     and     fö|u|| =   |p|M||   . 

Since    U = -6P   ,   this  is  equivalent  to     fPlM1 || =  0   . 

Thus we need only  show that there exists    M1     such  that 

M[->MI     and     IPJM'I  =  0   .     To show this we will  construct 

an expression    E    such that    5E = ü = -6P    and show 

. that there exists    M1     such that    M[->MI     and 

IIEIM'|| =   IIPIMH  +   ||E|M|I   .However since     6E = -6P,   6 (E+P)   =  0, 

.  thus     !|p|M|i +   i|E|M|| =   IJPlM'll +   [E|M||     and 

hence    |P|MV|| = 0  . 

First add to    g    a set ot arcs     {a1...an}     such that 

+ (aj (Pi)   /   +{ai)   = e(pi)   ,   and    M(ai)   =  1  . 

Since M(ai) > 0 the graph is still live.  By E6c 

every firing sequence in the new graph is also a 

firing sequence in ig . Clearly l& (a) = -6P . 
a 

Now define a test marking T such that 

For all ai TCo^) « M(ai) + |pi|Ml 

For all arcs a fi  {a-^f cu* * •an^ Tta) = .0 

We wish to show that there exists M'  such that 

M^M'  and M' >_ T 

Assume this is not the case. 

Then by Ell there exists a circuit C such that 

||C|M|| <   ||C|T||.   since'a t'U^l    implies;   TCa)   = 0 

C must include some a.  arcs. 

/ . 

JM iV1" 
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(. i 
- {fs- 

Let C « ja^ ..a2.. .aj (new subscripts) 

i+1 Let p!  be the path in C from a^ to a^ 

(p1. goes from a.  to a1) . 

By assumption 

|iC | M||  <   |C|T||     thus 

j       . j j       . j 
y M(a.)   +     I M(p')   <     I T(a.)   +    I T(pJ) 

i^l       1 i=l       ^ i«l       i i«l 

But    T    only places tokens on    a.     arcs,  thus for all 
we have 

p'     T(p')  =0    and/  Inia^  + lM(pM <  ^(cxi)   . 

By definition 

T(a.)  = M(a.)   + M(p.)       thus 

Inia^  + lM(p[)   <  Ima^  + lM(pi)       and thus 

1) lM(pn   <  ^(p.)   . 

This  contradicts  the assumption that   fP|M||    is 

minimal for we can define    P*  = P -  ^Pj} •  + tpl}• 

and by 1)     fF' |M|| <   |1P|M||  . 

Thus    C    such that     IJCIMI  <   ic|T|    does not exist and 

by Ell there exists    M'     and    a    such that    MEcOM' 

and    M1   >_ T  . 

Since    M'   >_T •   •    .. 

iM'ioi.)   >    IT (a.) 

However    lT(a,)   =  JMCO.)   +  IttipO 
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Thus     ^M1 (a.i)   >   EM(ai)   +   I'M (p..) 
i     .    ' i. i 

But       JM« (ai)   =   lElM'I 
i 

^(a.)  «  |1E|M|| 
i 

jHip^   =   |P|M|I 
i 

Thus    HEIM' II >_ ||E|M|1 + ||P|M|| 

Since    6E +  6P »  0 

.     |E|M||  +   iPlHJl  -   ||E|M'||  +   ||P|M'|| 

Thus    IJEIM' II >  IIEIM' || + HPIM' || 

Thus     ü   ^IIPIM'H 

However     |1P|M||  >, 0     thus     (PIM'|| =  0 

Since    U « -6P 

jjajui =   ||P|M1| 

Q.E.D. 

The preceding theorem deals with expressions of the form 

1) max fa|UI where a ranges over the set of firing 
M [ö> 

sequences which begin at M . 

We may also (-valoate expressions like 

2) max  |a|u|! where M is assumed to range over the 
M,Mla> 

markings of some live marking class M and a over 

the set of firing sequences beginning at M . An example 

of the distinction between 1) and 2) is the difference 

between the DM and the D measure: 

DM(x|y) ■ max |a|x-y|       D(x|y) = max |a|x-y 
r       M[a> M,M[o> 
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Theorem G4 

In a strongly connected live graph g 

Let U be a linear expression in vertices such that 

there exists an expression E in arcs with positive 

coefficients such that -6E =: U . 

max  ||ö|U|| =   min  ||E + E' |M|| 
M,M[a>      -ÖE=U= E' 

where E'  is an expression in arcs with positive 

coefficients. 

Proof:  First we will show that E1  exists.  Since g is 

strongly connected there exists a circuit c which 

contains each arc at least once.  This circuit defines 

a linear expression C = ||a. |c||a, + I^M^... ||an| c||an 

in arcs such that öC = 0 . 

Let N be a positive integer such that for all a^ 

1)       Nllajcli > jlajEll  . 

Then let E' = NC - E .  By 1) , . E' . has positive 

coefficients . Since öE' = 6NC - 6E and 6NC = 0 ,- 

v 

. 
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6E1   = -6E    thus     «SB'   = U  . 

Now we will show that      max     ||a|u||  < min     ||E+E'|M|| 
•6E=U=6EI 

^-t« 

M/M[a> 

Let a be any sequence beginning at some M e M such 

Since -6E -- U that M[o>Ml . 

2) ||a|u|| =   l|E|Ml|  -   ||E|M"|I 

However since E1  has positive coefficients 

PE
1
 |M|| ^ 0  thus 

3) ||E|M|| < HE + E'|M|| . 

Furthermore     IJEIM' ||  >^ 0    thus 

4) -INM'II < 0 

Adding  4)   and  3)  we have     IiE|M||  -   IEIM
1
 ||   <   ||E + E'|M||    thus 

by  2)    |jö|ü|| f  ||E + E'|M||     for all    M,M[o>   ,     E    and    E'   . 

(Note again that     |]E + E' |M(|     is  independent of    M 

ranging over    M    because       (E+E")   =  0   ,) 

Thus in particular, 

max     fa | Ü ||  <        min       ||E + E' |M |[ 
MfM[ö^ -6E=U=6E' 

Hence we need only show that there exist    M,M[a>  , 

E    and    E'     such that     jja |u|| =   |E + E1 |M ||  . . 

Let    M      be  any marking in    M  .     By    G3 

max  ||0|-u| «    min||E|M| 
M0[a> 6E=U 

Let    a      be the maximal    a    and    E^    be the minimal o o 

E  .     Then if    M0Ia0>M1  ,      l^0\^i\\ * P .. 

However 

5) max  ||a|U|| -      minlJElMilj 
M1[a> ''      -6E=U 
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Let a,  be the maximal a     and E, . be the minimal 

E .  Clearly ••'6E1 « 6E0 .  Since  HEQIMJ^I'-.O 

iEo + EilMill = !lEi!Mi!l •   By 5)   iailull " liEilMii 

thus  there exists    H^,  01,  E-j^    and    E0    such that 

-6E1 = U = ,(SE      and     Wa^vW =   |iE1 + E0|M||  . 

Thus      max     ||a|u|l  =        min     ||E + E'|M|| 
MfM[a> -6E=ü=6E, 

Q.E.D. 

The preceding theorems enable us to generalize 

the measure D(x|y) for single vertices x and y.to a 

similar measure for sets. 

Recall that 

Dri^iy^ Inax lNx"y|l 
M Lo) 

D(x y)  = max |lc|x-y|| 
M,MC<s> 

Definition; 

Let U and V be sets of vertices 

DM(U|V) = max ||a|u-v|| 
w      M[a> 

D(U|V) = max  |a|ü-v|j 
M,M[a> 

Note that a set S of vertices may be expressed as 

a linear expression which places coefficient 1 on 

veS and 0 on v^S .  The reader will be pleased 

to discover that if x and y are single vertices 

DiM({x}|{y}) = DM(x|y) 

 -al80..D({x)|{v}) = VildA.^.  
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Theorem   G5; 

If      'TTVV   is  live and strongly  connected and    U^   ,   U^   f 

and    Ü3    are vertex sets  containing the same number 

of vertices;   that is,     llujvll =   ||u2|v|i =   IK^IvH 

then  for all    U-j   /   U2   ,   U3 

a. DCUiJUj^)   =  0 

b. D(Ui|U2)   = DC^I^1 

C.        0(03^103)   <  D(U1|U2)   +  D(U2|U3) 

Proof: 

ä)       DdJiJu,)   «    max     Halu,   - vA =   ||a|o|| = .0 
M,M[a> 

L 
mumimuiiiiiiaimwMiWBW 
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i ! 

b)       Since inin       ||E + E1 |M(|    is  symmetric with 
-ÖE^U-SE' 

respect to E and E1 ,, 

min       ||E + E' |Mir= min IJE,   + El |M||   . 
-ÖE^ÖE' -SE^C-Uj^öE^ 

Thus  in  a strongly  connected live graph 

1) max     ||a|Ui 
m,M[a> 

max     IP I-U ||  . 

Now if    U    and    U'     are vertex sets  containing the same 

number of vertices,     E    such that    6E = U -  U'     exists, 

thus by   1)     DCUJU')   =    max     ||a|u - U'|| =    max     |ia|u,   - o| « 
M,M[o> M/MEa) 

DCU'jU)    . 

This means that if  two vertex sets  are the same size, 

the    D    measure  is  symmetric. 

min HE-L + EjjMl c)     If    D(U.1|U2)   = N = 

and    D(U2|U3)   = K = 
-«VürV6El 

min ||E9  + E'|M|| 
-6E2=TJ2-U3=6E^ 

Then there exists    E3 = E-,^ + E2    and    E^ = E^ + E' 

such  that    -6E3 = -öEj^ -6E2 =   (U1-U2)   +   (l^-l^) "= U1 -  U3 

and 

6E^ «  6E'   +  6E^ =   ("x-Uj,)   +   (ü2-U3)   = \J1 - U3    with 

IIE3  + E^l  =  D(U1|U2)   +  D(Ü2|U3)   . 

DCU, JU.)   = rain jJE + E« ||  <   ||E3 + E'jj « .0(0,1'^)   + 
•L     J -OEsUi-Ug^SE' j 

DCü2|U3) 

and 

DCÜJU3)   <  D(U1|Ü2)   +  D(U2|U3)    .   • '   •;     -■■■ •••••.•.-.■•. 

Q.E.D. 

i 
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H.  Set Firings 
1       '       i n. n..i ■ i i ii 

In the marked graph ^^ « <g/M> , there may exist 

several vertices x such that M[x>  exists.  If M[x> 

exists and M[y>  exists,  x and y are said to be 

concurrently firable in M .  Note:  a vertex may be 

concurrently firable with itself. 

X' 

/ 
The number of times x can be fired concurrently 

with itself at a given marking M is 

the minimum number of tokens on an input 

arc to x .  We define the vertex marking 

of M , written M, to be the function 

which assigns this number to each vertex. 

ft(x) = 2 

J 

ft(x) A t  min |d|.M| 
*(arx) 

Q 
Ö 

A set firing is a vector in vertices v/hich may be con- 

currently fired at a given marking M .  We write M[(CT)> exists, 

Formally, if ä is a vector in vertices, M[(a)> exists 

A for all vertices x ,  ||cr|x|| £. ft{x) .  Given a marking 

M , the maximal set firing at M is a vector in vertices 

Ö.. such that for all x 
M 

Icrjxf m  M(x) . 

Let Z~   (ai) / C^) f Ca3)... C
a
n)  be a sequence of set firings. 
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The lencTth of %   ,  written  |£|  is defined as n . 

M0[DM  means Mo[(01)>  M1[ (a2)> M2... [ (an)> Mn . 

It is assumed that M^-^iiu.))     exists for 0 £ i £ n . 

If M[DM , then I     fires every vertex the same number 

of times.  We will call this number K  . 

Theorem Hi;  Given a marked graph <^g,M> 

Let I  = (CJ-L) , (ä2), ((73)... (an) ^ .0 and let M[I>M . 

Let C be any circuit in g . 

M   jcM 
Then     Ks - ICIMII 

Proof;     Let cr    be any set  firing in     E   .     Let ,.VC    be the 

vector in vertices  such that    |xjvc|i  =   |!x|c||     for all    x 

.     Then clearly     IjöJvJ   <   |IC|M|   . 

Thus   'l'fa.Iv  || <   |Z|   '   ||C|M|| 
i=l    ^^    c . 

|E| 
However       I   lldjv   || = K  • |vc|v|l = K  ' ||c|V.i 

i=l L ^ 

IS'I . icjvjl 
Thus    K  •IICJAll  <   |E|   *   ||C|M||    and 

Ki  "JCIMI 

Definition: 

i(m)   A i    modulo    m 

i(m)  is the least integer h such that 

i = n + K.vm where K is an integer. 
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TheorGiu H2;  Lot I  = . C^Q) , (a-^) ... (öm„1) ^ 0 be any 

sequence of maximal set firings such that 

i0[(ao)>Mi[(a1)>...Mm_1[{am_1)>M0 ; that is, M0t£>M0 

/ Then there exists a circuit C such that 

x| _ ||c|v 

Kv   |C|M| 

■ 

LJ 

a 

Proof;  First we will show that there exists a circuit 
-ts» 

CJ|x0a0x1a1.. .x ,« „I^Q such that: 

For all i ^ 0 there exists a set firing S-  in S such 

that la. him) 
2a-  xi(n) e Si 

3a.  I'Silx.^^jf =f«i(n)l
Mi(m)i 

We will now recursively define a backwards directed 

path PiyoVl^* which contains such a circuit. 

With every i > 0 we will associate a set firing S1 

in I    such that 

lb. Si = a. —G> s: , = CT. , , , 
i   D     i+1   D-l(m) 

2b.  yi e S| 

3b.  If S| « aj ,  fs^ly^j^i - la^v,^ M. 

Let yQ be any vertex. 

Let Si be any set firing in , Z. ...which contains ^Q •--  .-..•,.;•. 

Now assume yi e Si » a,. . Since tfj-Km) i-3  a maximal set firing, 
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h-KnoW = i{^
n j^l^-Krn)! 

W?. define a-  as any arc a for which lalM-i_i (m) t 

minimal;  i.e. fajM.^ (m) f = ^ .^ (m) lyj 

Note that 

iöj-l(m)lt(«iHI 

4b-  l-iilj-Km)!' ("j-ltrnjItCill 

However since y. e S. = a. «|dj|M4| , thus 

laj-l(m)lt^i)i t1  '  hence t(ai) e aj-l(m) •  It is 

therefore not surprising that we define SI+1  
as 0n-l(m) 

and yi+1 as  +(ai) . 

Now consider the set of ordered pairs ^y^Sl) . 

Since the number of vertices is finite and the number of 

set firings in Z    is finite, the number of such ordered 

pairs is finite.  Since we have associated such an ordered 

pair with each vertex of P ,  there must exist integers 

j and k , k > j such that ^y-wS') = XynrS'> i.e., 

Yi     and y.  are the same vertex; S\    and S,1  are the 1      k j      k 

same set firing. 

Consider the path P' ||y.a ^k-A ' ^ 'E p • 
ID 

»■um ii III»I_I '' 

BEaa 
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Define C = C |!y, u  ...a.y. . 

Since Si = o^ r;H> S!   r~ cr. _ , %  and since S' = S' , 
i   3     i+1   j-l(m) k   j 

there must exist an integer  j £ k' £ k such that 
^ {a,. 

S'  = o  .  We define CliXQaQX-^a, .. .xn_ia _n^o  
as 

Cllykl'"k'-l'' * ^j^k^-l" *'"k'^k' *  Correspondingly 

S0 A S'. ; if Si = S5 , S.+1 A S'+l . 

It follows from lb, 2b and 3b that C as defined 

satisfies properties la, 2a and 3a. . It follows froru 3a 

and the argument 4b that 

'   4a-     lsilxi.{n)ll =   f^ilVKm)11 

We now  define a family of paths 

po A «o 

i+l = i   i+i 

"r-( Obviously Pn_i = C . 

* Definition: 

' S0 A SQ 

Z.^, A Z. + S.+1 i+l = i   i+l 

Since    S^^ = o^^ (m) i(m)   = m -  1    implies  that    Zm-1 = Z  . 

.    Furthermore,   since    Sn «  SQ an(m)  ? ö0 (ml     thüs    n    :LS 

-]• . divisible by    m .     In fact,     l^ = £ •   1^ = g •   E 
J ' ' \ 

and    M0[i:i>Mi+1  . ^ 

We will show by  induction that 

ic. .   IpjM.^r^   IlEjxpir  for    0< i <n-l  ." 

icmiiwiiiwiwiin iiiiiiiiipwiw 
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li+2 

For    1=0    we note  that by property  4a 

KM ■ KM =l«olMili ■ lpol.Mil 
Now assume     1c  for    i   (Note: all    M    and    a    subscripts 

are    modulo    m  ) 

llPi+llMi+2fl  "  iPilMi+2ll   +  lai+llMi+2l  = 

(ipilMi+ii 
+ hi+il^I - K+il

xi+ill) + llai+il
M 

(|lpilMi+ii 
+ ll^i+ilxol - ioi+ilxi+il!) + 

(K-MlMi+li  
+  iöi+ll^i+lll -  l^i+llxi+2II) = . 

(I^W   +   !-i+ll
x0ll)   - (K+1|Mi+1ll -  l^llx^llj 

However,  by  inductive assumption,     |P^|M.   ,[1 =  f^. |XQ||   / 

thus     llPilM^J! +  |ai+1|x0|! =  |Ei+1|x0||   . 

Thus we have 

^      iPi+ll
Mi+2ll=^i+i|x0li+(||ai+1|Mi+1||- 

l-i+lK+20 
By  3a,  however    lki+ilxi+2 |l =(öti+1 |M.+1 |   =  |cii+1|Mi+1|   . 

Hence the  term in parenthesis  in  Id  is equal to  zero and 

we have 

3o-     lPl+llMi+2" " 'WM  • 
Now ,   recall  that    P„  ,   = C    and    £     .   = n-1 n-1 ±1   . 

Since P    is a circuit we may replace JP „IIMJJ by 

IIPn-jMll  .  By 3c# ||Pn.1|M||«.iEn_i|x0|{a.,a|j:|ko|| 

that is, 

2d.     |C|M||  =.^|U|X0||     . 
m 

However: 

• iz.ix0i = Kj,.   ... ,..,...,....,,.;,. ;.,. 

n=.|c|v|| 

m-.|E| 
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|C|M) = 
Iclvll .    V 

I 

"|clv|      1^1 

; 

- 

Ö 

liclvl , Jil 
IC|M        KV 

Q. E. D. 

Theorem 113;  In a finite, strongly connected marked graph 

"rrvv = (g,M> let Z be an infinite sequence of maximal 

set firings.  Then I    becomes periodic.  That is, 

E = J^ + ITj where Lg = l2l2l2'" 

Proof;  This follows because 

1. Z    is infinite. 

2. Since g is finite and strongly connected, the 

number of different markings in M is finite. 

3. For every M there exists a unique maximal set 

firing a  and hence a unique successor M[a > . 

Theorom H4;  In a finite strongly connected marked graph, 

let Z jf^ 0 be any set firing sequence and M any marking 

such that M[£>M .  Let C be any circuit. 

min |i:| _ max |'c|v[ 

M,E "K^  ' C fclMt 

Proof:  By Hi," :''' ■•••■•'•■ ■•••''•- >■■■■■'■■•■'■•'■■'■   :-v. ■■■■■•■■:■■■   •• '•■ ■ •••'••■ 

L£i > [£i«J  thus we need only show that there exists 
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an    M    and a    X     such  that    MUHl    and a    C    such that 

l>-l „ licMi 
"K" 

Z CM 

Since g is strongly connected, by 113, any infinite 

set firing sequence bocomes periodic, thus we may pick an 

infinite sequence E ■ E, + T. .  Obviously there exists 

an M'  siuch that M1 [Z^)«' .  By II?. there exists a circuit 
2 

Kz " |C|M( * 
2 

\ 
Theorera H5;  Let I and l*     he  two sequences of maximal ^ 

set firings such that M[Z?M and M1 [2>MI .  Then i 

in _ in . i 
KZ   Kj;. 

Proof:  By H2 and H4,  1|1 - max^l ' ^ • 
KE    C tclMli    KE 

H6. Interpretation of Maximal Set Firings. 

one time unit.  Then all the events in a set firing may 

occur concurrently.  Thus if E is a set firing sequence, 

the number of time units required for the corresponding 

sequence of events is  |E| . 

If M[E>M then L^i is a measure of the average 

number of time units per vertex firing. We call this 

measure wavelength and denote it by  X(E) .  The number —=— 
.  ; "~^~   ....,.:■■.....•....:•■ ../XXE). 

is expressed in vertex firings per time unit." We call 

Assume each vertex represents an event which requires 
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this moasurG frequency or throughput rate and denote it 

by  fCE) . 

Thus theorem 114 states that the maximum average 

frequency of: a graph is equal to the minimum ratio Ic Ml; 

lc|v| 

Theorem H2 states that for any sequence Z of maximal set 

firings,  f(Z)  is maximum.  We may wish to assume that 

some events take many time units and some events take no 

time at all. 

We can genera]ize our theorems to this case by the 

following transformation. 

1. Assign to each vertex an integer A (x) 2l 0 • 

2. If A(x) = 1, leave x unaltered. 

If A(x) - 0, replace x by a complete graph from 

the vertices which point to x to the vertices to 

which x points. 

Example; 

xy\ A(x) = 0 

A 

3.  If A(x) > 1, replace x by a string of vertices 

of length A(x) . 
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a n 

-t> 

Ll • 

^2! 

p 

X n • 

/ 

With this transformation complete, we can state: 

max f(E) = min 
z      e 

|c Mi 
ic Al 

where Z is any set 

firing sequence which begins and ends with the same 

marking.  Furthermore, for any sequence Z of maximal 

set firings which begins and ends at the same marking, 

f(E)  is maximum. 

Note:  Other timing constraints may be realized 

by graph transformations.  For example, we 

can ensure that M(x) £ K by placing a self 

loop on x with K tokens.  Since this self 

loop L has one vertex,  ÜLüil = K ; this 
|L V| ■ 

implies that f (Z) >_ K . 

A time delay A (a) may be placed on an arc by adding A(a) 

vertices to it: 
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V -i-> v 
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Li 
D 
i: 

x * V 

xr • 

y? 
Examples: 

I 
- V "^03-^ 

M[(w y) , (x   z)>M 

.in Ml! 
c   |c|v| 

1 
2 

HZ)   = 
|2 

1 
2 

M .    |C|M|     2     1 
mm  -;—;—:   =   c   =  T 

C      |C|V|        6        3 

t -   (d a) (f c) (b c) 

M[J:>M HI)   " 
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M 

.   |IC|M||     4 
C   |ic|v||        3 

1 =   (x,x,y,z) (yjy/Z/X) {z,z,y.,Y) HI) =5 
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STATE MACHINES AND INFORMATION 

n 

■ 

u 

U 
D 
0 

A.  Introduction 

Al..  Scope 

This paper introduces a concept of information flow 

through a system and provides an analysis of this flov/ for 

the car>e of finite state machines.  This concept allov/s 

information to be identified, and measured in a manner 

consistent with existing measures of information.  It 

allows us to trace the history of a quantum of information 

as it moves through its system environment. 

A2.  Information 

A piece of information is usually thought of as an 

answer to a question.  In regard to systems, information 

answers questions of the form:  which of several possible 

next behaviors will the system exhibit? That is, the 

information resolves choices among possible next behaviors. 

More specifically, if the system is represented as ä state 

machine, then it is resolution of choice among possible 

next state transitions.  Such resolutions of choice will 

be called information input to a system. 

We can say that a present system state contains the 

information which was earlier supplied to the system if 

the present state could only have been achieved in the 

presence of those choice resolutions.  Then this past 

information can be "deduced" from the present state.  . 

Finally, the system may pass to new states and thus 

mm 
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i : 

"forget" some old information.  In other words, the new 

state is compatible with several possible choice resolutions 

on some earlier occasion.  We will identify such occasions 

of forgetting with information output. 

Here is an example — a new coat OJ: paint is to go 

on my wall.  I supply the information red.  One year later, 

the state of the wall still contains that information. 

Two years later, even though the color faded and is now a 

different red, it still contains that information.  Three 

years later a new coat of paint is to go on the wall again. 

When it does — and whether it is red or not — the state 

of the wall no longer "remembers" my original decision. 

Another example: we may imagine the system as a library and 

information contained in the system as the books inside. 

Input and output correspond to the movement of books 

into and out of the library.  The contents of a book are 

remembered by the library as long as it retains the book 

and forgotten when the book leaves. 

A3.  State Machines 

We will represent a state machine by a directed graph. 

The vertices of the graph represent the states of the 

machine and the arcs represent possible state transitions. 

A state machine graph 

the 

x o-- z 
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We will not assume that the  state machine  graph is 

accompanied by an alphabet of input-output characters or 

a  table of state transitions.     Rather,  we will attempt   ■ 

to construct a set of  fundamental information quanta 

appropriate to  the state machine based only on its  graph 

structure.     We may  indicate  the state of the machine by 

placing a token on one of  its vertices   (vertex  z above). 

A4.     Input 

If a machine is in a state from which it is possible 
1    ■ 

to transit to several states, (e.g. states x and y 

above) it requires ar. input of information to determine 
J 

which transition is to take place.  It is with reference 
i 

to the flow of this type of information that we wish to 

analyze the behavior of the machine. 
i 

We therefore assume that the input to a state machine 

is exactly equivalent to the choice of the next state 

from the set of possible successors. 

A5.  Output 

If a machine arrives at a state which may be reached 

from several different states (e.g. y above) it "forgets" 

which arc the state was entered by. We will assume that 

the information which is lost on arrival at a state is 

exactly equivalent to the specification of the arc by 

which the state was entered.  That is, what the machine 

forgets when it arrives at a state is.exactly.the infor- 

mation which would be required to back up correctly to the 
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immediately preceding state. 

We will also assume that the information content of 

the machine is a function of its state and that information 

which is output is composed of information v/hich has been 

input. 

A6.  Information Content 

Imagine a state machine S in state x  (Fig. 1.) 

which receives an input which causes it to change to state 

y .  We may think of this input as simply the name of the 

arc a from x to y . 

/ 

a 

yO       O 
Fig.   1. 

Let us  imagine that we pause before arriving at    y    at 

an intermediate  state placed on the  arc    a     (Fig.   2.). 

Fig.   2. 
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When S  is in this state  (a)  we may infer that the last 

input at the state x was a .  Thus we say that the 

information represented by the input a is contained in 

S  at the state  a . 

Now we continue to state y .  It is possible that we 

can now no longer infer that the last input at x was a . 

For example, there may be a path from x to y which 

does not go through a .  In this case we say that some 

part of the information which was present at a is lost 

on arrival at the state y . 

1. n 

I 

■I 

1 u. 
■ 

y^ 
Fig. 3. 

Since we have assumed that output information is 

composed of old input information, we wish to determine 

exactly what the relationship is between outputs and the 

past inputs of which they art  composed. 

EXAMPLE: 
o 3 

a 
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7vt the state x we may input a and change the 

machine to state a .  At state a the machine remembers 

tie input a ; that is, the only way to reach state a 

is to leave x by a .  Now the machine changes from a 

to x .  The information which was contained in the machine 

at a is output; we no longer know which state transition 

occurred last time we were at state x . 

It is possible to store J.  larger amount of information 

in a state machine of the following type: 
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If we start at state a and move to u through states 

b and c , vie  have stored in the machine the information 

corresponding to the choices of the arcs  a , .3  and y   . 

When we move from d to e all of this information is 

lost. 

Information may be input in a large quantity and output 

piece by piece.  If we start at x and input a , this 

information is retained by the machine at state a . 

:. 

'! 

y  j - 

I. 

[ 

That is, we can deduce that the last input at x was a . 

If we now move to state b ,  however, part of this infor- 

mation is lost.  We are no longer sure whether the last 

input at x was  a or 3 .  We have not lost all of the 

information the input a represents, however, because we 

can still say that the last input at x was neither y 

nor 6 .  Specifically, the arc a    was a selection of 

one arc out of four possibilities.  The selection of one of 

the two arcs a and 3 out of these four possibilities 

is still recorded in the state of the machine, but the 

selection of a out of the pair a  , .3 was output on 
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arrival at b .  If we nov; continue to c and d , the 

rest of the information represented by the input a will 

be lost. 

The preceding example suggests that if we are to find 

a set of fundamental quanta with which to express information 

flow through the state machine, we must allow an input to 

consist of many such quanta so that it may be output piece 

by piece. 

A7.  Regent Inputs 

If the information content of the machine S  is to be 

a function of its state, any change in information content 

which occurs after the machine leaves a state x must 

vanish by the time the machine returns there.  Any infor- 

mation which is output must be re-input, and any information 

which is input must be output. 

It therefore follows that if information is output by 

the machine, it can only be composed of some combination 

of the most recent inputs at each state.  This is because 

any earlier input at a state x would have been output by 

the time the machine returned to x .  We will now 

investigate the properties of the set of most recent inputs 

of a state machine.  This investigation will enable us to 

formalize the intuitive connection between input and output 

suggested by the preceding examples. 
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B.  Docis ion Gr a].)hs 

Dl. We shall restrict our attention to state machines 

which can be represented by finite, strongly connected 

graphs where the vertices represent the states and the 

arcs represent the transitions. 

B2.  We can think of the history of a state machine S 

as a path o in the corresponding graph.  We may either 

wish to draw attention to the state sequence (i.e. vertex 

sequence) which the path defines, or to the firing 

sequence (i.e. arc sequence).  In either case, we will 

refer to the path a and let context make clear which 

sequence is of interest. 

B3.  Let P be a finite directed path in a graph S . 

We can associate with every vertex x on the path P 

(except, perhaps, the terminal vertex) an arc, called the 

last exit from x , namely the latest arc on P incident 

out of x .  Then we can call an arc of P a last exit 

if it is the last exit of some vertex.  The last exits of 

P represent the latest decisions which were made at the 

vertices of P .  A Decision-graph D or simply D-graph 

is the set of last exits  (E)  of P , plus the vertices 

of these arcs with the terminal vertex of P (w)  dis- 

tinguished,  w is called the root of the D-graph. We 

write D =<£,(*)> . 

nmii IMX i 
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Exaraolos 

(1) 

/' 

■I..» ♦ 

•■■•, i-d   -■ 
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^  T 

V 
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\ 
X <v 

/ 
/ 

(2) 0x 

V 
\ 

v,/ 
• 

Ö 
} (  \ 

e) 
s 

(3) 
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WG will Cri3.1 a path in S Ion9 it it comos to and exits 

from every vertex of S . 

The D-graphs of J5 are the D-graphs of all long 

paths of S . 

B4.  Let P'  be a terminal segment of the path P .  Then 

the D-graph of P'  must be a subgraph of the D-graph of P . 

Proof:  This follows because, if a vertex lies on P1  as 

well as P then its last exit in P"  mu:;t be the same 

as its last exit in P . 

 1* 

B5.  Let P|j...x be a path and. D ijts D-g^aph.  Then, in 

D , there is a path from every vertex on P to the vertex 

x , the root of D . 

Proof;  This is easy to see with an induction on the 

number of arcs in P .  This statement is obvious if P 

is a single arc. 

Now consider a path,  Q , with n + 1 arcs  (n>l) . 

Suppose that the k   arc of Q is arc a from vertex 

y  to vertex z , and that a is the first last exit of 

Q .  If Q'  is the terminal segment of Q which begins 

just after the k   arc of Q , then its D-graph,  D1 

is a subgraph of D , differing from D only in that 

it lacks vertex y and its exit'arc.  ' 

By inductive hypothesis our assertion is true 

■ 
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for D' , and therefore obviously for D . 

B6. If the path p|. ..x never exists from x (i.e, is 

not of the form ||.. .x.. .x ) then the D-graph D of P 

must be a tree rooted at x . 

Proof;  By B5f there is a path from every vertex in D 

to x .  Since each vertex has at most one output arc in 

D , these paths are unique.  Thus any circuit in D would 

have to pass through x — but x , by hypothesis has no 

exit arc in D . 

Conversely, if P is of the form  |...x...x then 

D must contain a simple circuit, and in fact exactly 

one — namely the simple circuit consisting of the last 

exit arc from x to some vertex y and the unique simple 

path in D from y to x . 

We can now describe the D-graphs of a finite directed 

graph S .  Since the generating paths are "long" (i.e., 

come into and out of every vertex of S)  the resulting 

D-giraph can be visualized as a maximal tree (directed 

toward the root), rooted at the terminal vertex of the 

path, together with one arc leaving the root and thus 

closing a circuit. .. For the rest of this discussion, .. . . . •. 

Digraph means D-graph of a long path. 

— 
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B7.  Given a finite strongly directed graph S , we wish 

to show that any maximal directed tree together with one 

arc out of the root x is a D-graph of S with root 

x .  In other words, given the maximal tree with root x 

and the additional arc one must construct a path ter- 

minating at x with that tree and that arc as its D-graph. 

I 

I 

I" 

■ 

0 

0 

Proof;  Let T be a maximal tree in S ,  x0 its root 

and a any arc leaving x0 .  Now choose any path P0 

which begins at x0 , exits x0 for the first time by 

the arc a , and contains every leaf node of T .  This 

path surely exists since S is strongly connected. 

- —      it» ■ • 

Now let P0 = P0|x0,x1,x2...Xj  . 

Now define for 0 £ i £ j-1 

o   0 

pi = pilvxi"--xj-i 
(Pi is simply P with the last i vertices removed.) 

Now since T is maximal there exists a unique path Q in 

T from every vertex to xc 

For P.jx0/x,,...x._.  define Q^ to be the unique path in 

T from x. .  to x  . 

Now we can define the path P which yields a D-graph 

consisting of T and a rooted at x0 , 

p = poöopiQr--pj-iQj-i 

The following is an example of this construction: 
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a 

/ 

114,1,2, 
-£>, 

Pi^,!^ 

Polk: 
—t.* 

P 4,1,2,3,4,1,2,4,1,4 

Now we will show that in fact the D-graph D of P is 

^T + a, x ^ .  P terminates at x  , thus D is rooted at 

x0 .  The last exit arc in I     from x  is the path P^.i / 

which is simply the first arc a of P0 f thus a e D . 

Because P covers every path from a leaf of T to 
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the root of T , it covers every arc of T .  Since T 

contains every vertex, and since P begins with an exit 

from the root of the tree,  P exits at least once from 

every vertex of S .  Therefore P is long. 

If a vertex does not lie on P then every exit from 

that vertex in P  (particularly1 the last one)  lies on a Q 

path and hence on the tree.    If a vertex y f-  x0 does 

lie on some path P;^ then let P^ be 

the last such path in the order in which the paths are 

enumerated.  Since P^ is the last path containing y , 

y must be the terminal vertex of P^ .  Thus the last 

R /■'      exit from y is on Q^ and h^nce on the tree. 

I 

V 

\ 

D 
D 

B6 and B7 allow us to state the following theorems: 

B8.  D = <A,(i)> is a D-graph of S if and only if A = T + a 

where . T is any maximal directed tree rooted at w 

and a'"is any exit of w . 

B9.  The number of different D-graphs rooted at a vertex 

x . is equal to the product of the number of maximal trees 

with root x and the number of output arcs of x . 
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-t«. 
BIO. Let Pf...y,x be a long path in 8 , and D  its 

D-graph.  The arc entering x which lies on the unique 

circuit of D is the arc in P from y to x . 

I 

Proof;  Consider the D-graph,  D1 , of the path P'j...y 

with P1  identical to P less its terminal arc.  D' 

differs from D in at most one respect:  it may contain 

a different exit arc from y or possibly no exit arc 

from y .  Since P is long,  P'  exits from x and 

hence D1  contains a single path from x to y which 

exits unaltered in D .  In D , the arc a is a path 

from y to x and therefore the arc must lie on the 

unique circuit of D . 

Bll. If S is interpreted as a state transition diagram 

and P as a state sequence for S then one can interpret 

the D-graph of P as the record of all last decisions 

made in generating P .  The interpretation of BIO is 

then the following: 

The records of all last decisions are sufficient to 

determine the last step of the state sequence (i.e. last 

arc of the path) and therefore sufficient to determine the 

next-to-last state.  Put another way:  the information 

for how to back up one step is contained in the record of 

last decisions. 

Our initial assumptions stated that the information 

output upon arriving at a state is equivalent'to the   ••.••' 

information required to back up correctly to the immediately 
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preceding state.  We also as-suined that an output is composed 

of old inputs, in fact of the most recent inputs.  Since 

the information rcquix-ed to back up correctly is contained 

in the set of last decisions (Theorem BIO) our two 

assumptions are consistent. 

B 12.  In BIO it was shown that the present D-graph of a 

state machine uniquely determines the arc by which the 

present state was entered.  For a specific state however, 

less information than the entire D-graph may be sufficient 

to uniquely determine this arc (for example a state with 

only one input arc).  In this section we wish to determine 

exactly what information about last decisions is required 

to determine the entrance to a given state. 

Definition; A partial D-graph of a set of vertices V is 

a D-graph less the last exits of vertices not belonging to 

the V set. We write D (V) = .<E,w>    for the partial 

D-graph of the set V rooted at w where E is the set of 

last exits from V .  (.V may be null.) 

Ö 

D 
i: 
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V     . 
Definition:     Given a state    x   ,   x    is a set of states 

.V. 
such that: 

1.  Any partial D-graph D(x) = <E,x> uniquely 

determines the entry arc of x .  More formally, 

for any partial D-graph D(I) = <E,x> , every D-graph 

D = <A,x; where E Q A    has the same arc a 

entering x on its unique circuit. 
V 

2. x is minimal with respect to property 1. 

B 13.  Theorem:  For a given state x ,  x is unique and 

consists of all vertices y with the following property: 

3. There exist two non-empty paths P-^ and P2 

from y to x which intersect only at x and y f 

and a path P., from x to y which intersects 

P,  and P2 only at x and y . 

Note:  P3 may be null.  This is the case if x itself 

satisfies property 3: 



■mmmmm mm» 

! 

i 

11 

D 
0 

169. 

Proof;  First we will show that any partial D-graph of 

the set of vertices V described in 3 uniquely determines 

the entry arc of x ,  To do this we will show that if 

<A,x>  is a partial D-graph of V , there cannot exist 

D-graphs containing A whose circuits enter x by 

different arcs.  Let C-^  and C2 be two simple circuits 

which enter x through different arcs.  Now traverse Cv backwards 

from x.  Let y be the first vertex encountered which is 

also on C2 .  1. 

'y\ 

Cl|Pl P2 c2;p3 

x 

Since y is the first such vertex, path V-^  — C^ 

from y to x intersects the path P^ G.  C2  from y to 

x only at the vertices y and x .  Furthermore, the path 

P3 = C2 - P2 intersects P^ and P2 only at x and y . 

Thus y satisfies property 3 and hence y e V .  Therefore 

any partial D-graph D(V) = <A,x> contains a specific exit 

arc of y .  Since C,  and C- exit y by different 

arcs,  CJL and C2 cannot both be contained in D-graphs 

which contain A . 

Now we will show that every vertex y which satisfies 
V 

property 3 must be in x .  To do this, we will show that 

there exists a partial D-graph of the set S - {y} , (where 

nr ' y LVrnijii'ii^iMwil» 



170. 

S is the set o.f vertices of the graph)  D(S-{y)) = <h,x> 

v^hich does not uniquely determine the entry arc of x . 

This would imply that no cot of vertices not containing y 

could satisfy property 1 of x . 

Assume y satisfies property 3.  Let a-, / o^ 

and  a3  be the first arcs, if any, of ^i ' ^2 • an^  ^3 * 

Consider the set of arcs  {P-^ U P2 ^ p3)'  Delete from this 

set all arcs leaving x and the first arc a-,  of P^ . 

(See arcs in the above diagrams.) 

The remaining set of arcs is a tree rooted at x .  Add 

arcs to this set until it becomes a maxir^al tree T . 

Now define 

E = T - {a2} + {a3)   . 

Then  <E,x>  is a partial D-graph of the set S - {y} . 

However,  <E+a-j , x>  is a D-graph whose unique circuit 

contains the last arc of PJL ; <E+a2 ^ x> is a D-graph 

whose unique circuit contains the last arc of P9 .  Since 

these arcs both enter x and cannot be the same,  <E,x- 
» 

does not uniquely determine the entry arc of x .  Thus 

y e x . 

Q.E.D. 

B 14.  By definition x is a minimal set of vertices 

whose last exits are always sufficient to determine the 

entry arc of x ,  The. specification of thi? arc.    ■ .•• . .••. 

represents the information which is output when x is 
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I 
enternd by the arc.     The specification of  thin arc as  a 

function of tlie past decisions or inputs  at the vertices 
V in    x    suggests   that  the  .information output at    x    rs 

V 
a  function of  theJLnformation  input at  thei states  in    x   , 

In this  section we will  further explore this 

connection. 

! 

I 

0 

L 

Definition;  If x is an arc or vertex,  Cx is the set 

of simple circuits which contain x . 

Note that Cx also specifies a class of D-graphs, 

namely all those D-graphs which contain circuits in Cx • 

For each vertex x the information set Ix is defined 

as the complement of Cx .  Thus a large information set 

means a large set of excluded circuits and hence a small 

set of included D-graphs; and therefore a low steady state 

probability. 

For an arc a from x to y , 

la A Cx - Ca 

Oa A Cy - Ca 
ct Thus in the state transition x • V-'y 

ly = Ix + la - Oa 

If a circuit c is an element of la , we say c is 

input at x in thei state transition x • «-.»►• y .  If c 

is an element of Oa / we say c is output at y in the 

state transition x«- a 

If c is output at y and if c was last input at 

^tmmammmtmmtm " —Ml IWilUlllt""!—■"I'WIIIil"! ilMlil in 
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a vertex  z , we .say 0(2)  is output, at y . 

13 15.  Theorem; y c x if and only if there exists 

a simple circuit c such that c may be input at y 

and c(y)  may be output at x . 

-> If y e x then by D 20 the paths P1/P2' and £3 exist 

as defined in 3.  Thus beginning at y we can move to x via 

Pj  and input the circuit c = P2 U P3 at y .  Since 

P^ 0 c = {x,y} , cCy)  is output at x . 

■♦■ Conversely if c may be input at y and c{y)  may 

be output at x , there exists a path P^ from y  to x 

such that P-L 0 c = {x,y} .  Now define P2 and P3 to 

be the paths in c from y to x and x to y 

respectively.  The paths P^, P2 and P_ satisfy 

requirement 3 for y .  Thus by B 20,  y e x . 

Examples; 

w 

v 
y e x 

Both Cj -- {afc,e} and C2 = {a^d} 

may be input at y ; c-^iy)     and 

C2(y)  may be output at x . 
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. V 
y / x 

C = {&,h,c,ä,Q)    may be input at 

y and output at x , however C(y) 

is output at z and C (z)     is 

output at x , 

This means that the decision made 

at y is outpiit at z and thus has 

no influence on the entry arc (and 

hence the output circuit set) at x . 

n 

I 

! 

1 
i: 

B 16.  With theorem B 15 in mind we define x to 
  V 

be the set of all states y such that there exists a 

curcuit c which may be input at x , such that c(x)  may 

be output at y . 

V 
Thus, while x is the set of states whose last inputs 

may influence the next output at x ,  x is the set of 

states whose next outputs may be influenced by the last 

input at x . 

Hence x = (y[xcy} . 

B 17.  On the basis of Theorem B 15 we propose that 

the set of simple circuits of a state machine graph, with 

each circuit representing a class of D-graphs (those which 

contain the circuit) are a correct set of elementary 

information quanta to represent information flow in state 

machines. ..•■.... •:•. ■ • . ■ 

The reader may verify that this set exhibits the 

—— 
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intuitive? propertinr; of input and output presented in 

the exar.ip3.os of section A. 

C. D-grai>11s and Probabi.litv 

Each simple circuit of a state machine graph 

nay be thought of as a quantum of information.  If we 

associate with a circuit C the set of D-graphs  A 

which contain C, the information C represents may be 

stated thus:  "The present D-graph is in A- ".  If a 

piece of information consists of several such quanta 

C, ,  C2 , C. we may say:  "The present D-graph is in 

Ap W  A U  A-,  ".  The simplest method of measuring the 
Cl   ^2   C3 

amount of information represented by a set of circuits 

C, , C» , C, is to count the number of D-graphs in 

A A„ U A,,  .  In this section we will show that this 
2   C3 Cn V   V. - "C 

method of information measurement is consistent with the 

existing measures of information in terms of probability. 

We will prove that the D-graphs of a state machine are equi- 

probable (Theorem Cl).  Thus the number of D-graphs in an 

information quantum is directly related to its probability. 

When we say the present D-graph of  S  is D we 

assume that the present state of S is the terminal vertex 

of a long path P  and the D-graph of P  is D.  The 

steady state probability of a D-graph  D = (A,u)  in 

"?— 
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S  is the probability that the present state of S  is w 

and A is the set of last exits from the vertices of S . 

Cl,  Theorem:  In the steady state of S , D-graphs are 

equiprobablc. 

Prooft   From S we will construct a new state machine 

S'  whose states are the D-graphs of S .  Then we will 

show that an equiprobablc distribution satisfies the 

steady-state equations of S1 .  Since S is represented 

by a strongly connected graph, the associated Markov process 

is irreducible.  Thus these equations have a unique solution1 

and the theorem is proved. 

Let S be a state machine at time t with state w 

and present D-graph D, .  Clearly w is the root of D, . 

We write P(D3->D2) = p if p is the probability that 

D2 will be the D-graph of S at time t + 1 . 

Let the states of S'  be the D-graphs of S .  The 

transition probabil'.ty in S'  from st^te D^ to D.  is 

defined as P(Di-»-D.) . 

Now for any D = (E/X^ the number of different 

D-graphs  D' for which PCD^-D') $  0 is simply the number 

Ax of output arcs of x .  Furthermore since we are 

assuming equiprobablc exits in S , these Ax output arcs 

are equiprobablc, hence if PCD-^D') ^ 0 / PCD-^D1) = — . 
Ax 

'Feller, William.  An Introduction to Probability 
Theory and its Applications, Vol. I, 2nd. ed. New York; 
Wiley, 1957, p. 408. 

ww'V-' ■ ' . ' V1' i.u.«' «**■■" 1 
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By DIO, the immediately preceding state of S  is 

uniquely determined by the present D-graph of S.  Thus, for any 

D , the D-graphs D.-     for which P(Dj->-D) -/  0 are all rooted 

at a unique vertex w , which is simply the immediately 

preceding state determined by D . 

Now let ^ be the set of all D.  such that PCDJ-^D) ?  0 

If D-eA ,  D-  differs from D only in respect to 

the last exit from w .  Thus D 0 D.  always contains a tree 

T rooted at w .  Furthermore any D-graph rooted at w 

which contains T is in A .  Hence A  is exactly the set 

of D-graphs rooted at w which contain T .  The number of such 

D-graphs is the number A^    of output arcs of w .  That is, 

|A| = A^ . 

Now define P{D.)  as the steady state probability 

of D.. in S1 .  Then the steady state equations for S" 

are: 

For all D 

P(D) = y PCD-;) PCD.->D) 
j 3 
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If P(D.^D) f  0   P(D4-*-D) = -  where' A  is the 
J JA *" 

number of output arcs of the root of D.. .  Furthermore 

every Dj e A has the same root w ,  Thus we may write: 

P(D) =  I  P(D.) \ 
DjEA  ^     Aa) 

How assume all D-graph probabilities are equal and 

thus equal to P(D) .  Then we havfe: 

P(D) = I    P(D) L 
D.eA    A^ 

Eowever,  |A| = A  thus 

Aw       J_ 1 
P(D) = J P(D) • A  = A  • P(D) ' — = P(D) 

i=l       Aa'    W        Aa) 

and we have P(D) ■ P(D)  which is always true. 

Thus the steady state equations are satisfied if the 

D-graphs of S are equiprobable. Since their solution is 

unique, they, are satisfied only if the D-graphs of S are 

equiprobable. 

The preceding theorem states that D-graphs are equi- 

probable in steady state. »Since S always has exactly one 

D-graph, PCD) n -   where £ is the total number of D-graphs 

of S . 

Results of theorem Cl. 

C2.  Let D.. be the number of D-graphs rooted at x. The 
•      Dx stea.dy state probability o^ x '^s T-^ . i Tlii.s ■ 

■sssessM 
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follows immediately from cl. since S is in state x 

if and only if its present D-graph is rooted at x . 

C3.   The probability of a D-graph D given that w 

is the present state is 0 if w is not the root of D 

and otherwise — where D  is the number of D graphs 
D        w 
w 

rooted at w . 

If a) is the root of D , . P (D) = P(w) P{D|a)) . 
D . . D 

However P(D) = ^ ; P (u) » ~  thus - = ~ P(D|W)  and 
i, i> y L 

P(D|W) = r1    • 

C4, Let    DR       be the numl^er of D-graphs  rooted at    x 
■■»'■I ■" l\j+ 

v;hich contain the set of arcs A .  Given the present 
present 

state x , the probability that the/D-graph    includes 
D 

some set of arcs A is ^ .  P(A|X) = 7 P(D|X) P(A|D) 
x D 

m 1_ 
D 

0  if A^D .    X 
By C3. P(D|x) = i_ , P(A|D)  is 1 if Ac D and 

C5.   Let Da be the number of D-graphs rooted at the 

vertex -Ka)  and containing a on a circuit.  (Note that 

D  is also the number of D-graphs rooted at +(a)  and 

containing a on a circuit.)  The steady state 

probability that an entrance to x is a where a is 
/ .D       •..■>.....,, 

some arc leading into x is" ~" '.   :'  ■ 
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Let PCax)  be the steady state probability that 

x is entered through the arc a .  By BIO, if S is at 

state x ,  x was entered through a if and only if 

the present D-graph (rooted at x ) is a member of a set 

containing a on o  circuit.  By C3/ the probability 
D 

of this set is 

£6.   We can now establish the relationship between state 

transitions in a state machine and changes in the amount 

of information contained ir the state machine. 

Assume S is at state x and transits to state y 

via arc a .  We will associate the exit from x with 

input and the arrival at y with output. 

! 

I 
I. 

The amount of information input required to leave x 

by a is defined as -log2P(xa)  where p{xa)  is the 

probability of leaving x by a . 

The amount of information which is output upon arrival 

at y is -logp(ay)  where p(ay)  is the probability of 

entering y through a .  This is simply the amount of 

information which would be required to back up from y 

along a . 

Thus if the initial information content at x is 

L 
..■,-—-^..^J—.-„.„..._...._.^._ , .■■ 
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-log I ,   the information content -log (I1)  after the 

transition from x to y is 

-log I - log p(xa) + logp(av)  = 

-log iPjqyi   . 
p(xa) 

For a longer sequence of states and transitions 

x oux,a1...x  we have o o i i   n 

/P(a0x1)    p{a1x2)     p(an,ixn) \ 
-log(I') = -log I"  ' -y-^- '"   -~  

\P(x0a0)    P(x1a1)    P(
xn-lan-l) ' 

C7. Hereafter by information content we will mean the 

argument of the -log function rather than the value of 

that function. 

If xay is a state transition,  p(xa) = — where 

N is the number of output arcs of x .  By B8 and B9, 

D = N • T where T is the number of trees rooted at x . 

Furthermore,  D  , the number of D-graphs rooted at x and 

containing a on a circuit, is equal to T , thus j 
D D 

p(xa) = i = -~ .  Similarly (by B16)  p(ay) = :— .  Thus 
N  Dx Dy 

D    D     D 
I« = T P(ay) a i _* • x « i -X 1   I pTaxT  I Dy   DJ  * Dy ' 

For a longer sequence x .x^,X2,...x 

Dv   Dv,   Dx     Dx  ,    Dv 
I1 = I -^2. •   l  -       2 ...  xn-l - x xo 

Dx    Dx"  Dv      Dv       Dv xl   x2   x3      xn     Uxn 

In particular for any sequence which is a circuit. 
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D  = D   and I' - I .  This measure allows us to speak 
Xo   xn 

of the infornKxtion difference from state  x to state y 

D 
as _ , which is independent of the path used in moving 

y £x      1*J1      EilSl     ' 
from    x    to    y  .     Note  that   (by B13)     n    =:  n        ~ vlv)   ' 

y   y/2  P y 

Thus it is consistent to assume that at the state x , 

I = —r^r   where p(x)  is the steady state probability 

of x .  For if we move from x to y , . 

!■ - A - lEM ana 11 = iM4 
' Dy  p(y)     i  I/P(X) 

D.  An Interpreted Analysis 

Dl.  We will construct and analyze a state machine which 

represents a binary channel.  The channel may be in three 

states:  empty, zero and one.  From the empty state it may 

change to either the zero state or the one state. 

At these states, one of three things may occur:  return to 

the empty state:  delay without error, and delay with error. 

L      ''    •   '      ' """""" ": '"  

D 
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delay 
without 
error 

delay with 
error 

We will label each arc with an input character and label 

the arcs entering E with appropriate output characters^ 

Using the methods described in the preceding sections we 

can determine where input information is output. 

D2.  To represent information quanta in this machine we 

will use rircuita in the method described in section B. 

The circuits of this state machine are: 

m',  in- 
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Q 
\ 

0 

i 

ST' 
f> 

X 

© A   (i) 
c7 

The input  "0"  at E  is logically equivalent to the ex- 

clusion MC-L or C3) . 

. i; 

-O 
= ^ and % 

Gr-^Q 
This exclusion means:  "Neither C,  nor C3 is in the 

present D-graph."    ■  •■ .•■•••.    :  •. :  .   • -^ 

The output "O" On arriving at E is logically 

---w^-— ^ ^^,||^||,||iriln|^1r|ft|^i^|^|^Tn
:inw■i 
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D3.  We will show that, by our measure of information, 

the fraction of the information associated with the output 

"0"  which is not part of the input  "0"  is equal to the 

probability that the 0 is an error. 

The number of D-graphs rooted at E which contain 

circuits in C, U C9 is  3 .  One of these D-graphs contains 

C  .  However,  C2  is not part of the input "0" .  Thus 

the fraction of the output  "0" v/hich is not contained in 

the input "0"  is — .  Now assume E is entered by 

thn  0  arc while the last exit from E  is the  1  arc. 

Then the only possible D-graph is <^C2 , E^> .  The probability 

of having left E by the 1 arc, given that we are at E 

and entered it by the 0 arc, is therefore =■ . 

DA.     We will now show how information quanta are input and 

output in a specific state sequence of the machine: 
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We will represent a state by a bar the length of which is 

proportional to the number of D-graphs rooted at that state. 

The bar is divided into sectors which represent circuits. 

The length of each sector is proportional to the number of 

D-graphs rooted at the state which contains that circuit. 

The circuit sets associated with the states are: 

C(E) = {C0fC1,C2,C3} 

c(0) = {c4/c0,c2,c3,c6} 

C(D) »»' {C5,C1,C2/C3,C6} 

I MWMHWiili *m »fewiMMMMMMI 
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Circuits  of  the  State Machine 

C2 C0   C3 Cl C5 

An error  free 
.sequence 

T:   %   (C1'C3) 

0:   ^   (C3,C4/C6) 

C2    C0 C3    Cl 

ET CJL 

"iTIo. 
::   ^   (C0,C2/C3,C6) 

):   ^   {C0,C2,C3/C6) 

cTf C0 

-'   %   ^A'Cß'^ 

*   i^,^) 
C0 ^3 

** sequence 
with error 

£ 
41 

: ' * (clrc3) 

(      ^   (C3'C4,C6) 

0 

1-   ^   (C0/C3,C4) 

C-   ^   (C3'ci'C5) 

1 

I:   ^   (^'S'^) 

0:   ^   (C0/C3) 

E 

C2   C0 C3 r^ 
I 
I 
1 • 

C2   C0 C3 ci 

C2 Co 1 
C4._._   C6 C? ,C0 C3 

C6       ^2 

_5fi-_ -;-~v-'     •     •   ,    . ■ I—.3- : l-^.,—J. 

C2 COLL3 Cl 

rS-^. 

■—- 
^ j^ 
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Note that in the error free sequence ^ C, is input at 

E and output at E while in the error sequence, ^ C^ 

is input at E and output at 1 . 

Furthermore, in the error free sequence ^ CQ  is 

never input, while in the error sequence ^ CQ is input 

at 0 , (when the error occurs, in fact) and is output at 

E . 

i. 

i 
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Also related, though less directly, is a large body of 

work to be found under such headings as Time Independence, 

Asynchronous Operation and Parallel Commutation.  Much  1 

work on such topics has recently been done at Massachusetts 

Institute of Technology, Washington University, U.C.L.A 

and Berkeley. 
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1. 

INTRODUCTION 

This report covers work on Task Area II of the 

ARPA sponsored project "Research in Machine-Independent 

Software Programming" covering the six-month period 

ending on December 21,   1969. Although technically, this 

report is the sequel to "The Final Report for the 

Information System Theory Project"1, it is sclf-cor.taihed. 

This report includes the work of Dr. Anatol W. Holt 

and Mr. F. Commoner.  During the period noted above, 

consultations were held with Mr. Robert M. Shapiro, 

Dr. Carl Adam Petri, Herr Hartmann Genrich and Dr. Shimon Even. 

This introduction is divided into three parts.  First, 

a summary of the objectives of the project as a whole; 

second a reported contract period; third, a view of 

tjiings to come. 

work. 
'See bibliography  for this and other directly related 
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to the  study of two simpler classes of structures — 

marked graphs * and state transition diagrams.  Both of these 

are special cases of occurrence systems. We have reason to 

hope that our developing ability to analyze these two classes 

will give us the tools with which to attack the analysis of 

systems which are Petri-net describable. Marked graphs and 

state transition diagrams isolate two aspects of system des- 

cription from one another:  the aspect which has to do with 

flow, and the aspect which has to do with function.  The 

analysis of flow (marked graphs) shows where items flow and 

what other items they meet; the analysis of function shows the 

structure of the items and how they affect one another. 

In the area of marked graphs effort was divided into two 

parts:  semantics and mathematics.  Here "Semantics" means .de- 

veloping techniques for expressing meanings about systems in 
« 

marked graph fcrm (Chapters II and III of this report). On the 

side of mathematics many theorems and algorithms were developed 

which have significant system interpretation (Chapters IV and V) 

^he first serious study of marked graphs was undertaken 
by Hartmann Genrich, a colleague of carl Adam Petri at GMD — 
Gesellschaft für Mathematik und Datenverarbeitung, 5201 Bir- 
linghoven. West Germany.  He communicated with us on two 
occasions — in June 1968 and June 1969.  By June 1968 he had 
already proved a set of conditions to be necessary and 
sufficient for liveness and safety in marked graphs.  (There 
exists a technical memorandum about this at the GMD — Das 
Zollstationo"problem.)  Various of our theorems, notably 
E4-E6 and F2-F6,   generalize facts which we became aware of 
through Genrich — the direction of generalization is usually 
the elimination of safety, or of liveness and safety, as 
hypotheses.  Genrich's doctoral dissertation on marked graphs 
will become available later this year from the GMD, under 
the title Einfache Nicht-scquonticllc Prozesse. 
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In the area of state transition analysis we developed a 

new technical concept of information which makes it possible 

to measure information quantities that flow in and out of a 

state machine, as well as identify the information content 

which flows in and out at different state transitions (Chapter 

VI).  This work is, thus far, of theoretical rather than 

practical interest. 

C.  Things to Come 

In regard to marked graphs, ws are approaching the point 

where it will be useful and necessary to build a program package 

for the construction and analysis of such graphs. Without such 

a package we will not learn how to build marked graph represen- 

tations of practical systems. An analogy can be made to com- 

puter programming. Marked graphs (and more generally, Petri 

nets) are to system description as computer code is to programming. 

In order to represent large problems, one first needs assembly 

techniques, and subsequently higher-level languages.  Efforts 

to mechanize such assembly of big descriptions are woith 

making since there now exist analytic tools which will reveal 

interesting properties of the resulting descriptions. 

Several next steps are indicated in moving toward the 

analysis of Petri nets.  One direction is the direct extension 

of present marked graph results.  Another direction is to form 

the appropriate connections between our existing work on state 

transition diagrams and marked graphs.  Both of these direc- 

tions will be pursued in the next period. 



*■ 

a \ 
This report consists of an introduction to a series of technical 

documents describing specific research taslc; performed during this 
reporting period. 

These documents are cu/rcntly in final stages of preparation 
and will be distributed as supplemental Special Technical Reports 

under the supporting contract. 


